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Reowolf: Executable, Compositional, Synchronous
Protocol Specifications

Christopher A. Esterhuyse, Benjamin Lion, Hans-Dieter A. Hiep, Farhad Arbab

Abstract
Low-level communication primitives such as BSD sockets
are not adequate for next-generation Internet applications.
Instead, we propose programmable connectors that declare
high-level, application-specific communication intent using
a compositional, formal protocol description language suit-
able for verification. This paper contributes the Protocol De-
scription Language (PDL), that has a formal compositional
semantics and is executable as witnessed by a distributed,
dynamically (re)configureable run-time interpreter.

Introduction
Currently, networks of computing systems operate by de
facto conventions. Applications make use of informally spec-
ified protocol stacks that are implemented within operating
systems to enable peer-to-peer inter-process communication.
This includes applications deployed on a single machine, in
local area networks, and on the global Internet. Realistic pro-
tocol stacks are large and complex, e.g. various application
layer protocols (e.g. BGP, DNS, HTTP, FTP) are on top of
transport layer protocols (e.g. SCTP, TCP, TLS, UDP) on top
of Internet protocols (e.g. IPv4, IPv6).
Virtually all Internet applications use a decades-old BSD

socket application programming interface (API). However,
application protocols implemented on top of sockets are of-
ten not transparent and lack rigorous standards. Network
middleware must resort to guess the high-level application
intent hidden by sockets [21]. Furthermore, high-level se-
curity properties (e.g. kill-switch absence) are obfuscated
by the tight coupling between an application’s state and its
socket communications. As a result, applications are difficult
and costly to analyze, impeding the availability of proto-
col implementations with desirable qualities. To avoid this
friction, application developers favor centralized application
architectures over decentralized architectures.
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Presently, we introduce Reowolf connectors as an alterna-
tive to BSD sockets for realizing multi-party, synchronous
communication sessions between networked applications.
This model lets application programmers express intended
behavior at a higher level of abstraction, thereby abstracting
from complex low-level implementation details such as those
of distributed consensus algorithms. Reowolf connectors of-
fer an API that lets application programmers declaratively
specify their communication intent using the Protocol De-
scription Language (PDL), delegating the implementation
of protocols to the operating system and networking envi-
ronment. One of our design goals for PDL is to make the
formal verification of high-level security properties tractable.
Thus, PDL needs a compositional, formal meaning that can
be analyzed with mathematical rigor.
There is a working prototype of Reowolf connectors im-

plemented in Rust at the user-mode level, which includes a
run-time interpreter of PDL, available in a persistent Zenodo
repository [1]. The goal of this article is to present interest-
ing theoretical aspects of our work and to give a formal basis
for the aforementioned implementation. In particular, the
theoretical contributions of this article include:

1. We define the Protocol Description Language (PDL)
intended for formally and unambiguously specifying
the behavior of network protocols. The design of PDL
is heavily based on the Reo coordination language
[2, 3, 17, 19, 28] but differs at crucial points. (Section 1)

2. We give a formal but idealistic semantics, by assuming
the availability of oracles. We give semantics in two
ways: an operational semantics and a denotational se-
mantics. The operational semantics is the most natural
semantics of the language, and the denotational se-
mantics witnesses that our semantics is compositional.
We show the equivalence of these two. (Section 2)

3. Towards an implementation of a run-time interpreter
of PDL, we eliminate the need for oracles from the
semantics and instead give a realistic semantics for
a fragment of PDL that is suitable for incrementally
unfolding a protocol’s behavior. This semantics shows
that, for certain protocols, we can effectively generate
oracles on-the-fly. We show how this third semantics
relates to the first two. (Section 3)

We then introduce connectors as a replacement for sock-
ets for multi-party network programming and describe in
abstracto our prototype implementation in Section 4. The pro-
totype generates communication behavior from protocols,
specified just-in-time, by distributed applications connected
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by the Internet. The rest of the paper reflects on our contribu-
tions: Sections 5 and 6 evaluate the properties of connectors
and PDL by their own merits, and in comparison to related
work, respectively. Section 7 concludes with a summary.

1 Protocol Description Language
In this section, we give an account of a formal protocol and
introduce the syntax and semantics for the Protocol Descrip-
tion Language (PDL). The core idea is that formal protocols
can be defined in terms of components. In general, we dis-
tinguish two types of components: protocol components that
are specified in PDL, and native components which are given
a fixed interpretation. An example of a native component is
an IP component that offers connectivity over the Internet,
or a clock component that independently tracks time.
Components exchange data with each other via shared

ports. The ports through which a component can exchange
data define the interface of that component. For example,
the native IP component has an interface consisting of ports
through which IP packets are exchanged, and a clock com-
ponent has a port through which the current clock value is
exchanged. For the remainder, by protocol we mean a set of
(interacting) components, and we say that these components
are composed together to form the protocol.
We discuss a few core design principles of PDL. First, a

component is intentionally not aware of the other compo-
nents with which it composes into a protocol. That is, the
behavior of an individual component cannot depend on par-
ticular intentional properties of the other components with
which it is composed. When two components are composed,
only the behavior that both individual components share is
permissible: but neither component can inspect the other
component by means other than data exchanged through
their interface. Second, the coordination of data exchange
is explicit and exogenous to components. This leads us, for
each component, to be able to recognize a trace of observable
behavior, that is the data exchanged at ports over time. A
component can be analyzed and its properties verified on its
own, independently of its context.
The most natural way to give meaning to a composition

of components is to intersect their individual behavior: two
components form a new component which restricts the be-
havior of its underlying components to the largest common
subset, i.e., the intersection. Additionally, we express hiding
of a port on a component as a unary operator that removes
that port from the interface. The resulting component accepts
as behavior anything that the original component accepts,
but ignoring the data exchanged on the hidden port. The
conformance of an application to a protocol is equivalent to
asking if the intersection of the protocol component with
the native component that represents the behavior of the ap-
plication is non-empty. Of course, other semantic operations
may be of interest. In the following, we syntactically describe

protocol components expressed in PDL with intersection as
composition operation.

Syntax. Let𝑉 be a set of variables with typical element 𝑥 .
Let 𝑃 be a set of port variables with typical element 𝑝 . We
assume𝑉 and 𝑃 are disjoint. The abstract syntax for our pro-
tocol description language with two syntactical categories
for components (𝐶) and statements (𝑆) is defined:

𝐶 F 𝑆 | 𝐶 ∩𝐶 | ∃𝑝.𝐶
𝑆 F skip | 𝑥 B 𝑒 | 𝑥 ← 𝑝 | 𝑥 → 𝑝 | assert 𝑏 | sync
| if 𝑏 then 𝑆 else 𝑆 fi | while 𝑏 do 𝑆 od | 𝑆 ; 𝑆

where 𝑒 stands for an expression; 𝑏 represents the usual
Boolean expressions over variables in 𝑉 extended with the
novel firing operator ¿𝑝 for a port 𝑝 . The inverted question
mark symbol ¿ is used as a prefix unary operator, because
if ¿𝑝 is true it anticipates that the port fires. Intuitively, the
operations 𝑥 ← 𝑝 and 𝑥 → 𝑝 model a get and put operation
on port 𝑝 , respectively. While the state variables 𝑥 refer to
standard memory locations in a component state, a port
variable 𝑝 refers to a shared store between components. The
firing operator ¿𝑝 acts as a condition on the current value
at port 𝑏. The sync operation enforces all ports to have the
same value, which, if successful, acts as a reset operation
on the port’s value. The interface I(𝑐) of a component 𝑐
is the collection of all free port variables occurring in its
program. We refer to I𝑝 (𝑐) and I𝑔 (𝑐) for the set of ports on
which component 𝑐 puts (output ports) and gets (input ports),
respectively. An existential free component can be written
as the intersection of statements only, i.e.,𝐶 = 𝑆1∩ ...∩𝑆𝑛 for
𝑛 ∈ N. In that case, we call such component 𝐶 a composite
and all components 𝑆𝑖 for 1 ≤ 𝑖 ≤ 𝑛 its primitives.

Example. Consider the voting component 𝐴(𝑝𝐴, 𝑞𝐴, 𝑛, 𝑅):

while true do 𝑛 → 𝑝𝐴 ;
if ¿𝑞𝐴 then 𝑥 ← 𝑞𝐴 else skip fi ;
if 𝑗 = 𝑅 then 𝑗 := 0 ; 𝑛 := 1 − 𝑛 else 𝑗 := 𝑗 + 1 fi ;

sync od

with 𝑛 ∈ {1, 0} and 𝑥 initialized to 0. Component 𝐴 selects a
vote 𝑛, and keeps on voting the same value 𝑁 times, and then
flips its vote. Individually, component 𝐴 exhibits streams of
bits at port 𝑝𝐴, that consist of a sequence of 𝑅 repetitions of
𝑛, followed by 𝑅 repetitions of 1 − 𝑛, etc.

Consider the following comparison component𝑈 (𝑖1, 𝑖2, 𝑜):

while true do
if ¿𝑖1 ∧ ¿𝑖2 then 𝑥1 ← 𝑖1 ; 𝑥2 ← 𝑖2 ;

if 𝑥1 = 𝑥2 then 𝑥1 → 𝑜 else skip fi
else if ¿𝑖1 ∧ ¬¿𝑖2 then 𝑥1 ← 𝑖1 ; 𝑥1 → 𝑜 else skip fi

if ¿𝑖2 ∧ ¬¿𝑖1 then 𝑥2 ← 𝑖2 ; 𝑥2 → 𝑜 else skip fi
fi ; sync od

2



221

222

223

224

225

226

227

228

229

230

231

232

233

234

235

236

237

238

239

240

241

242

243

244

245

246

247

248

249

250

251

252

253

254

255

256

257

258

259

260

261

262

263

264

265

266

267

268

269

270

271

272

273

274

275

Reowolf: Executable, Compositional, Synchronous Protocol Specifications Conference’17, July 2017, Washington, DC, USA

276

277

278

279

280

281

282

283

284

285

286

287

288

289

290

291

292

293

294

295

296

297

298

299

300

301

302

303

304

305

306

307

308

309

310

311

312

313

314

315

316

317

318

319

320

321

322

323

324

325

326

327

328

329

330

𝑅𝑒𝑝 (𝑝, 𝑞, 𝑟 ) = while true do
if ¿𝑝 then 𝑥 ← 𝑝; 𝑥 → 𝑞; 𝑥 → 𝑟

else assert ¬¿𝑞 ∧ ¬¿𝑟 fi; sync
od

𝑆𝑎𝑚𝑒 (𝑝, 𝑞, 𝑟 ) = while true do
if ¿𝑝 then
𝑥 ← 𝑝; 𝑦 ← 𝑞; assert 𝑝 = 𝑞; 𝑥 → 𝑟

else assert ¬¿𝑞 ∧ ¬¿𝑟 fi; sync
od

Figure 1. Definition of protocols 𝑅𝑒𝑝 and 𝑆𝑎𝑚𝑒 , parametric
over ports 𝑝 , 𝑞, and 𝑟 .

Component𝑈 compares the values at its ports 𝑖1 and 𝑖2, and
outputs on 𝑜 the value of both ports if they fired with the
same value, or if only one port fires, of that firing port. We
consider the expression 𝑀 (𝑝𝐴1 , 𝑜1, ..., 𝑝𝐴𝑘

, 𝑜𝑘 , 𝑜), for 𝑘 > 1,
defined as:

𝑈 (𝑝𝐴𝑘
, 𝑜𝑘 , 𝑜) ∩𝑈 (𝑝𝐴1 , 𝑝𝐴2 , 𝑜1) ∩

⋂
1≤𝑖≤𝑘−1

𝑈 (𝑝𝐴𝑖
, 𝑜𝑖 , 𝑜𝑖+1)

𝑀 is the composite of a series of𝑈 components, each casting
the result of its comparison to a next comparison unit. As
a result, if it fires, port 𝑜 contains the outcome of the ma-
jority of the votes among voters 𝐴1, ..., 𝐴𝑘 . Finally, we write
composition of voters with the voting protocol as:

𝑀 (𝑝𝐴1 , 𝑜1, ..., 𝑝𝐴𝑘
, 𝑜𝑘 , 𝑜) ∩

⋂
1≤𝑖≤𝑘

𝐴𝑖 (𝑝𝐴𝑖
, 𝑜, 𝑏𝑖 , 𝑅𝑖 )

where 𝑏𝑖 ∈ {0, 1} is the vote of component 𝐴𝑖 , and 𝑅𝑖 is its
repetition.
We make several observations. The protocol is not cen-

tralized, and is defined in terms of several comparison units.
The voters do not have access to votes of other voters, but
can speculate on the result of the vote before voting. Each
unit may just compare the votes, without necessarily access-
ing the value of the vote. One may therefore employ some
encryption and decryption protocols to make the voting
protocol completely private.

2 Idealistic Semantics
Consider the voting protocol detailed in Section 1 instanti-
ated for three voters: Alice, Bob, and Dan. Three rounds of
votes of each voters are recorded in Table 1. Note that, indi-
vidually, each pair of ports reflects the behavior of a voter,
i.e., its vote and the result. A cell in Table 1 consists of the
value of a port in a round, e.g., port 𝑝𝐴 at round 1 has value
0, and port 𝑝𝐶 at round 2 has value 1. The property of syn-
chrony imposed by the majority protocol induces a relation
among the cells in Table 1. In every round, the output of the

1
2
3
...

𝑝𝐴 𝑞𝐴
0 0
1 1
1 1
...

𝑝𝐵 𝑞𝐵
1 0
1 1
0 1
...

𝑝𝐶 𝑞𝐶
0 0
1 1
1 1
...

Table 1. Three round of votes and results for Alice, Bob,
and Dan, respectively with interface (𝑝𝐴, 𝑞𝐴), (𝑝𝐵, 𝑞𝐵), and
(𝑝𝐶 , 𝑞𝐶 ).

(𝜎, 𝑠, skip) −→ (𝜎, 𝑠,✓)
(𝜎, 𝑠, 𝑥 B 𝑒) −→ (𝜎, 𝑠 [𝑥 B J𝑒K(𝑠)],✓)

If 𝜎 (0) (𝑝) ≠ ★ :
(𝜎, 𝑠, 𝑥 ← 𝑝) −→ (𝜎, 𝑠 [𝑥 B 𝜎 (0) (𝑝)],✓)

If 𝜎 (0) (𝑝) = 𝑠 (𝑥) :
(𝜎, 𝑠, 𝑝 ← 𝑥) −→ (𝜎, 𝑠,✓)

If J𝑏K(𝜎 (0), 𝑠) = true :
(𝜎, 𝑠, assert 𝑏) −→ (𝜎, 𝑠,✓)

(𝜎, 𝑠, sync) ✓−→ (𝜎 ′, 𝑠,✓)
If J𝑏K(𝜎 (0), 𝑠) = true :
(𝜎, 𝑠, if 𝑏 then 𝑆1 else 𝑆2 fi) −→ (𝜎, 𝑠, 𝑆1)

If J𝑏K(𝜎 (0), 𝑠) = false :
(𝜎, 𝑠, if 𝑏 then 𝑆1 else 𝑆2 fi) −→ (𝜎, 𝑠, 𝑆2)

If J𝑏K(𝜎 (0), 𝑠) = true :
(𝜎, 𝑠,while 𝑏 do 𝑆 od) −→ (𝜎, 𝑠, 𝑆 ; while 𝑏 do 𝑆 od)

If J𝑏K(𝜎 (0), 𝑠) = false :
(𝜎, 𝑠,while 𝑏 do 𝑆 od) −→ (𝜎, 𝑠,✓)

Figure 2. Operational semantics for PDL.

vote is the value given by the majority vote, i.e., the port
𝑞𝐴, 𝑞𝐵 , and 𝑞𝐶 always output the same value, which is the
majority of the votes at 𝑝𝐴, 𝑝𝐵 , and 𝑝𝐶 . We offer a semantics
for which each component denotes a set of such tables, and
where a composite component restricts which of individual
tables are allowed.

Operational semantics. Consider a value domainD. By
O(D) we denote the value domain extended by a special
element★ that represents the absence of a value. Let Σ denote
𝑉 → D, and Δ denote N→ 𝑃 → O(D). Here, Σ is the set
of all (internal) states with typical element 𝑠 , and Δ the set
of all (observable) streams with typical element 𝜎 . We define
𝑠 [𝑥 B 𝑣] as the usual state update for state 𝑠 , variable 𝑥 and
value 𝑣 ∈ D. We define𝜎 ′ as the tail of𝜎 , i.e.,𝜎 ′(𝑥) = 𝜎 (𝑥+1)
for all 𝑥 ∈ N. Further, we assume that J𝑒K : Σ → D is
defined for every expression 𝑒 , and that J𝑏K : (𝑃 → O(D))×
Σ → {true, false} is defined compositionally for Boolean

3
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expressions 𝑏, where we have J¿𝑝K(𝑎, 𝑠) = true if 𝑎(𝑝) ≠ ★,
and J¿𝑝K(𝑎, 𝑠) = false if 𝑎(𝑝) = ★.
We show in Figure 2 a small-step operational semantics

for statements. We consider an inductively defined labeled
relation between the triples of the form (𝜎, 𝑠, 𝑆) where, in
the place of 𝑆 we may have a check mark ✓ to indicate
termination, and the label on the relation is either a check
mark ✓ or empty.

Further, the small-step relation is closed under the follow-
ing rule:

(𝜎1, 𝑠1, 𝑆1)
𝑋−→ (𝜎2, 𝑠2, 𝑆 ′1)

(𝜎1, 𝑠1, 𝑆1 ; 𝑆2)
𝑋−→ (𝜎2, 𝑠2, 𝑆 ′1 ; 𝑆2)

where we identify ✓ ; 𝑆2 and 𝑆2.
We now consider (finite or infinite) chains of triples where

each pair of the successive elements is related by the above
relation. We write (𝜎, 𝑠, 𝑆) ↓ if there exists a chain with
(𝜎, 𝑠, 𝑆) as its first triple and either (1) the chain is finite and
its last triple has a check mark in the third place, or (2) it has
infinitely many triples with a check mark in the third place.
Intuitively, such a finite chain represents a terminating run,
and such an infinite chain represents a run that performs
sync infinitely often.
A component denotes a set of streams, i.e. J𝐶K ⊆ Δ. Let

𝜎 ↓ 𝑞 be the oracle such that for all 𝑖 ∈ N, (𝜎 ↓ 𝑞) (𝑖) (𝑝) = ★

if 𝑝 = 𝑞 and equals 𝜎 (𝑖) (𝑝) otherwise. Let 𝜄 ∈ Σ denote some
fixed initial but unspecified state. We define the semantics
as follows:

J𝐶1 ∩𝐶2K = J𝐶1K ∩ J𝐶2K
J∃𝑝.𝐶K = {𝜏 ∈ Δ | ∃𝜎 ∈ J𝐶K.(𝜏 ↓ 𝑞) = (𝜎 ↓ 𝑞)}

J𝑆K = {𝜎 | (𝜎, 𝜄, 𝑆) ↓}

Consider the following two statements:

Ω = while true do skip od
𝜔 = while true do sync od

Although both Ω and 𝜔 represent infinitely running pro-
grams, their denotations are different. Namely, JΩK = ∅,
since there does not exist a terminating run (true is never
false in any state, thus the loop never exits) nor does it per-
form sync infinitely often. However, J𝜔K = Δ, i.e., any stream
is acceptable: we always have a chain wherein sync occurs
infinitely often.
Further, consider the replicator protocol depicted in Fig-

ure 1. Its denotational semantics is as follows:

J𝑅𝑒𝑝 (𝑝, 𝑞, 𝑟 )K = {𝜎 | ∀𝑘. 𝜎 (𝑘) (𝑝) = 𝜎 (𝑘) (𝑞) = 𝜎 (𝑘) (𝑟 )}

that is, at any time 𝑘 either the value observed at 𝑝 is the
same as those at 𝑞 and 𝑟 , or there is no value observed at any
of the ports 𝑝 , 𝑞, and 𝑟 .

[skip] = {(𝜆, 𝜎, 𝜆) | 𝜎 ∈ Δ}
[𝑥 B 𝑒] = {((𝑠, 𝑖), 𝜎, (𝑠 [𝑥 B J𝑒K(𝑠)], 𝑖)) | 𝜎 ∈ Δ}
[𝑥 ← 𝑝] = {((𝑠, 𝑖), 𝜎, (𝑠 [𝑥 B 𝜎 (𝑖) (𝑝)], 𝑖)) | 𝜎 (𝑖) (𝑝) ≠ ★}
[𝑥 → 𝑝] = {((𝑠, 𝑖), 𝜎, (𝑠, 𝑖)) | 𝜎 (𝑖) (𝑝) = 𝑠 (𝑥)}
[assert 𝑏] = {((𝑠, 𝑖), 𝜎, (𝑠, 𝑖)) | J𝑏K(𝜎 (𝑖), 𝑠) = true}
[sync] = {((𝑠, 𝑖), 𝜎, (𝑠, 𝑖 + 1)) | 𝜎 ∈ Δ}
[𝑆1 ; 𝑆2] = [𝑆1] ◦ [𝑆2] ∪ {(𝜆, 𝜎,★) | (𝜆, 𝜎,★) ∈ [𝑆1]}
[if 𝑏 then 𝑆1 else 𝑆2 fi] = [assert 𝑏 ; 𝑆1] ∪ [assert ¬𝑏 ; 𝑆2]

[while 𝑏 do 𝑆 od]=
∞⋃
𝑘=0
[(while 𝑏 do 𝑆 od)𝑘 ]∪

∞⋂
𝑘=0

prog(𝑆, 𝑘)

where
[𝑆1] ◦ [𝑆2] = {(𝜆, 𝜎, 𝜏) | (𝜆, 𝜎, 𝜅) ∈ [𝑆1], (𝜅, 𝜎, 𝜏) ∈ [𝑆2]}
(while 𝑏 do 𝑆 od)0 = while true do skip od

(while 𝑏 do 𝑆 od)𝑘+1 = if 𝑏 then 𝑆 ; (while 𝑏 do 𝑆 od)𝑘

else skip fi

given 𝑃 = {((𝑠, 𝑖), 𝜎, (𝑡, 𝑖)) | 𝑖 ∈ N}𝐶 ,

prog(𝑆, 𝑘) = ( [𝑆𝑘 ] ◦
∞⋃

𝑚=1
( [𝑆𝑚] ∩ 𝑃))†

and 𝑋† = {(𝜆, 𝜎,★) | (𝜆, 𝜎, 𝜏) ∈ 𝑋 } and
𝑆0 = skip

𝑆𝑘+1 = assert 𝑏 ; 𝑆 ; 𝑆𝑘

Figure 3. Denotational semantics for PDL.

Denotational semantics. We call 𝐶 ⊆ (N → O(Σ)) ×
Δ × (N→ O(Σ)) a component, where (𝜆, 𝜎, 𝜏) ∈ 𝐶 consists
of the stream of initial states 𝜆, the observable behavior
𝜎 , and the stream of final states 𝜏 . For simplicity, we first
consider a subspace of components, namely those that have
a single initial state, and an optional final state. We write
(𝑠, 𝑖) for a stream 𝜆 ∈ N→ O(Σ) when 𝜆( 𝑗) = 𝑠 if 𝑗 = 𝑖 , and
★ otherwise. We reuse the symbol ★ to denote the stream
consisting of ★ only.

We interpret statements compositionally by defining [𝑆] ⊆
(N → O(Σ)) × Δ × (N → O(Σ)). We show the equality
J𝑆K = {𝜎 ∈ Δ | ( (𝑠, 0), 𝜎, 𝜏) ∈ [𝑆]}. In the following, when
unspecified, 𝑠 is a state that ranges over Σ and 𝑖 is an index
that ranges over N. We define [𝑆] on the structure of the
statement 𝑆 in Figure 3.

Intuitively, the component
⋃∞

𝑘=0 [(while 𝑏 do 𝑆 od)𝑘 ] con-
tains all streams in the denotation of the 𝑘-unfolding of the
while statement for some 𝑘 . Alternatively, the component⋂∞

𝑘=0 prog(𝑆, 𝑘) contains all streams in the denotation of 𝑆𝑘
for all 𝑘 . The first component represents either runs that
terminate and for which there is a witness for 𝑘 , or runs that
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enter finitely many times the loop but are non terminating
in 𝑆 . The second component includes runs that enter the loop
infinitely many times, but always eventually synchronize.

We show, in Theorem 2.1, that the denotational semantics
coincide with the operational semantics.

Theorem 2.1. For all statements 𝑆 in PDL:

J𝑆K = {𝜎 ∈ Δ | ( (𝑠, 0), 𝜎, 𝜏) ∈ [𝑆]}

Proof. See appendix. □

Reo. The semantics of PDL is faithful to the semantics of
Reo [4, 29]. A component in PDL denotes a set of sequences of
port-value assignments, which is analog to a Reo connector
that denotes a set of time data stream tuples over its ports,
with integer time. As well as in Reo, constraints over port
assignments are transitive: if 𝐴 always fires with 𝐵 and 𝐵

always fires with𝐶 , then𝐴 always fires with𝐶 . The idealistic
semantics of PDL introduced in this section shares the same
declarative paradigm with Reo: the emphasize is on what
behaviors are specified by the set of interacting components,
and not on how such behavior is constructed. PDL, however,
differs with Reo in that its sequential nature opens a more
imperative understanding of protocols. We give, in the next
section, an alternative semantics, called realistic semantics,
that defines the operational generation of some oracles.

3 Realistic Semantics
Section 1 gives to PDL a semantics as components. A pro-
gram written in PDL has as meaning a set of streams of
port-value assignments. As shown earlier, the semantics is
compositional, which is of interest for reasoning about a com-
posite program in terms of its parts. The results of Section 1
come, however, at a price: the operational intentionality of
the language is lost. For instance, in the time data streams
formalism, the statements 𝑥 ← 𝑝 and 𝑥 → 𝑝 are semanti-
cally equivalent, because they both represent the exchange
of a value 𝑥 through a port 𝑝 . On the other hand, their oper-
ational intentions differ: 𝑥 ← 𝑝 denotes production of the
value of 𝑥 through 𝑝 , and 𝑥 → 𝑝 denotes consumption of a
value designated as 𝑥 through 𝑝 . In this section, we provide
a realistic semantics, that closely describes how an imple-
mentation may construct some oracle given by the idealistic
semantics in Section 1. As expected, there exist oracles in the
ideal semantics that cannot be constructed, and some finite
runs in the realistic semantics cannot appear in any idealistic
semantics. For instance, below, we give a composition that is
not causal as an example of the former, and a run generated
with a one step look-ahead as an example of the latter.

Causality. Intuitively, causality prohibits cyclic depen-
dencies between send and receive operations at a port in a

round. Consider the following two component descriptions:

𝐶1 = while true do 𝑥 ← 𝑝;𝑥 → 𝑞 ; sync od
𝐶2 = while true do 𝑦 ← 𝑞;𝑦 → 𝑝 ; sync od

Denotationally, the two components have the same set of
streams, and J𝐶1 ∩ 𝐶2K = J𝐶1K ∩ J𝐶2K = J𝐶1K = J𝐶2K. Op-
erationally, in each iteration, 𝐶1 commits to exchange the
value that it consumes from 𝑝 through 𝑞, whereas in each
of its iterations, 𝐶2 commits to exchange the value that it
consumes from 𝑞 through 𝑝 . The cause of the fulfillment
of the commitment by 𝐶1 in each round, thus, must be the
availability of a data item on 𝑝 , whereas the cause of the
fulfillment of the commitment by 𝐶2 in each round must be
the availability of a data item on 𝑞. In spite of the fact that
J𝐶1 ∩𝐶2K = J𝐶1K = J𝐶2K, at run-time the concurrent execu-
tion of 𝐶1 and 𝐶2 deadlocks in a causality loop, because the
success of the commitment by each component depends on
the success of the commitment by the other. For 𝑖 ∈ {1, 2},
the cause of the success of each exchange by 𝐶𝑖 depends
on the success of an exchange by 𝐶3−𝑖 . However, neither 𝐶𝑖

actually produces any data for any exchange to succeed. We
refer to such cyclic dependencies as violation of causality.

Look-ahead. The ideal semantics in Section 1 defines the
behavior of a component as a set of oracles. We call a (finite)
run a (finite) sequence of port assignments, and call a step
one element of a run. Intuitively, a one step look-ahead is
an extension of the ideal semantics to accept finite runs that
can be constructed up to reaching the next sync statement.
Consider the following two component descriptions:

𝐶1 = 0← 𝑝 ; sync ; 1← 𝑝 ; sync ; 𝜔
𝐶2 = 0→ 𝑝 ; sync ; 2→ 𝑝 ; sync ; 𝜔

where we use 𝑛 ← 𝑝 as shorthand notation for 𝑥 ← 𝑝 ;
assert 𝑥 = 𝑛 with 𝑛 ∈ {0, 1}.
The component J𝐶1 ∩𝐶2K has empty behavior since the

applications will diverge in the second round. Operationally,
however, there is a run of size one in which 𝑝 has value 0 in
the first step. The run cannot be extended further, since 𝑝
cannot be assigned any value in the next round. Therefore,
the finite run ⟨{𝑝 ↦→ 0}⟩ consisting of only the single step
{𝑝 ↦→ 0} is a valid behavior only in what we refer to as a one
step look-ahead semantics.
Observe that the ideal semantics has an infinite look-

ahead, and can detect any further inconsistencies. Generally,
however, no finite sequence of operations can implement
infinite look-ahead. A finite 𝑘-step look-ahead semantics
is a superset of the ideal semantics that also contains the
𝑘-length prefix of each of its runs. In principle, every finite
𝑘-step look-ahead semantics is implementable. Clearly, the
ideal semantics rejects every 𝑘-length prefix that it does not
contain. A 𝑘-step look-ahead semantics over-approximates
the ideal semantics by admitting such junk runs. Observe
that the smaller the 𝑘 value, the more junk runs that a 𝑘-step
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look-ahead semantics contains. On the other hand, larger
𝑘 values necessarily require more look-ahead to ascertain
the validity of a run, which lead to less efficient implemen-
tations. Below, we introduce an operational semantics that
avoids causality loops and abides by the one-step look-ahead
constraint explained above.

Operational semantics. We consider a component 𝐶 as
the product of 𝑛 PDL components, i.e., an expression of form:

𝐶 = 𝑆1 ∩ ... ∩ 𝑆𝑛
where 𝑐 ∈ 𝐶 denotes a primitive component 𝑆𝑖 for some
1 ≤ 𝑖 ≤ 𝑛.

We take inspiration from [15, 17, 33, 37, 38], and more
generally the literature on solving Constraint Satisfaction
Problems (CSP). We distinguish the satisfaction problems of
(1) finding which port fires at which round, and (2) finding
which value to assign to each firing port.

We introduce some notation. A firing map is a partial
function from ports to Boolean and we use 𝜌 : 𝑃 ⇀ {⊤,⊥}
as a typical element and ∅ as the firing map with empty
domain. We use dom(𝜌) to denote the set of ports 𝑝 ∈ 𝑃

on which 𝜌 is defined. We say that 𝑝 fires in 𝜌 if 𝜌 (𝑝) =
⊤, and does not fire otherwise. An assignment is a partial
function from ports to values and we use 𝜇 : 𝑃 ⇀ 𝑉 as a
typical assignment. Observe that a step is a total assignment.
Similarly to Section 1, we use 𝑠 to range over component
memory store, and 𝑆 to range over the syntactic category of
PDL statements.
A component state is a quadruple (𝜌, 𝜇, 𝑠, 𝑆) of a firing

map 𝜌 , an assignment 𝜇, a map from state variables to values
𝑠 , and a program statement 𝑆 . We use 𝑝!𝑑 and 𝑝?𝑑 to denote
the act of putting and the getting of value 𝑑 ∈ D at port 𝑝 ,
respectively. The small step operational semantics consists
of the closure of the rules defined in Figure 4, under the
following rule:

(𝜌, 𝜇, 𝑠, 𝑆1)
𝑋→ (𝜌 ′, 𝜇, 𝑠 ′, 𝑆 ′1)

(𝜌, 𝑠, 𝑆1 ; 𝑆2)
𝑋→ (𝜌 ′, 𝜇, 𝑠 ′, 𝑆 ′1 ; 𝑆2)

where we identify ✓ ; 𝑆2 with 𝑆2.
Observe that the small step operational semantics is non-

deterministic: in a state (𝜌, 𝜇, 𝑠, 𝑆), (1) multiple extensions
of 𝜌 ′ may exist, and/or (2) multiple values in the value do-
main of a port may satisfy the port-value constraints that
determine a state.
Below, we introduce a deterministic relation ↠ on the

set of states of a component that models the concurrent
execution of the component. In our context, the relation↠
is deterministic because it is functional on a set of states and
a label. For a primitive component 𝑐 ∈ 𝐶 , a set of states Σ of
𝑐 , and a state (𝜌, 𝜇, 𝑠, 𝑆) ∈ Σ, we define the relation:

(𝜌, 𝜇, 𝑠, 𝑆) 𝑋→ (𝜌 ′, 𝜇 ′, 𝑠 ′, 𝑆 ′), 𝑋 ≠ ✓

Σ
𝑋
↠ Σ ∪ {(𝜌 ′, 𝜇 ′, 𝑠 ′, 𝑆 ′)}

(𝜌, 𝜇, 𝑠, skip) −→ (𝜌, 𝜇, 𝑠,✓)
(𝜌, 𝜇, 𝑠, 𝑥 B 𝑒) −→ (𝜌, 𝜇, 𝑠 [𝑥 B J𝑒K(𝑠)],✓)

(𝜌, 𝜇, 𝑠, sync) ✓−→ (∅, ∅, 𝑠,✓)
If 𝜌 (𝑝) is true, 𝑑 ∈ D and 𝑝 ∉ dom(𝜇) or 𝜇 (𝑝) = 𝑑 :

(𝜌, 𝜇, 𝑠, 𝑥 ← 𝑝)
(𝜌,𝑝?𝑑)
−→ (𝜌, 𝜇 [𝑝 := 𝑑], 𝑠 [𝑥 B 𝑑],✓)

If 𝜌 (𝑝) is true, 𝑝 ∉ dom(𝜇) or 𝜇 (𝑝) = 𝑠 (𝑥) :

(𝜌, 𝜇, 𝑠, 𝑥 → 𝑝)
(𝜌,𝑝!𝑠 (𝑥))
−→ (𝜌, 𝜇 [𝑝 := 𝑠 (𝑥)], 𝑠,✓)

If J𝑏K(𝜌, 𝑠) = true :
(𝜌, 𝜇, 𝑠, assert 𝑏) −→ (𝜌, 𝜇, 𝑠,✓)

(𝜌, 𝜇, 𝑠, if 𝑏 then 𝑆1 else 𝑆2 fi) −→ (𝜌, 𝜇, 𝑠, 𝑆1)
(𝜌, 𝜇, 𝑠,while 𝑏 do 𝑆 od) −→(𝜌, 𝜇, 𝑠, 𝑆 ; while 𝑏 do 𝑆 od)
If J𝑏K(𝜌, 𝑠) = false :
(𝜌, 𝜇, 𝑠, if 𝑏 then 𝑆1 else 𝑆2 fi) −→ (𝜌, 𝜇, 𝑠, 𝑆2)

(𝜌, 𝜇, 𝑠,while 𝑏 do 𝑆 od) −→ (𝜌, 𝜇, 𝑠,✓)
If 𝜌 ⊆ 𝜌 ′ :

(𝜌, 𝜇, 𝑠, 𝑆) −→ (𝜌 ′, 𝜇, 𝑠, 𝑆)

Figure 4. Small-step real operational semantics for PDL.

(𝜌, 𝜇, 𝑠, 𝑆) ✓→ (∅, ∅, 𝑠 ′, 𝑆 ′),
I(𝑐) ⊆ dom(𝜌),∀𝑝 ∈ I(𝑐). 𝜌 (𝑝) =⇒ 𝑝 ∈ dom(𝜇)

Σ
(𝜌,✓)
↠ {(∅, ∅, 𝑠 ′, 𝑆 ′)}

where I(𝑐) ⊆ 𝑃 is the interface of component 𝑐 . Note that
the domain of the firing map 𝜌 labeling a transition for a
sync statement covers all ports in I(𝑐). Observe, as well,
that the firing map in the state of a component may refer to
the firing of some ports outside of its interface.

Implicitly, the rule for the sync statement in the definition
of↠ imposes the following characteristics on components
sharing ports. First, if a component puts or gets from a port
shared by other components, then other components must
also perform compatible put or get operations. The behavior
models a all-or-nothing transaction mode. Second, all puts
and all gets on the same port have the same value. We leave
as future work the change of granularity in the semantics to
define alternative behavior in sharing of port variables. 1

Observe that↠ models the parallel progression of a com-
ponent, where each state in Σ corresponds to a speculative

1Nodes in Reo closely resemble shared ports in PDL. A node is an 𝑛 to𝑚
relation that acts as a merger on its 𝑛 putters, and as a replicator on its𝑚
getters. A PDL port acts as a consensus on its putters, and as a replicator on
its getters. As with the constraint automata semantics of Reo [5], we can
model a Reo node as a composition of an explicit𝑛-input merger component
whose only output port is in a 1-to-1 relation with a 1-to-𝑚 PDL port.
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branch of the component. Note, however, that we still allow
components to progress and receive arbitrary values at ports.

We define, in addition, a labeled transition relation→ on
a set Λ of pairs of a firing map and a data value, such that:

• Λ
(𝜌,𝑑)
−−−−→ Λ∪ {(𝜌, 𝑑)} if, for all (𝜌 ′, 𝑑 ′) ∈ Λ, there exists

𝑝 ∈ dom(𝜌) ∩ dom(𝜌 ′) such that 𝜌 (𝑝) ≠ 𝜌 ′(𝑝); and
• {(𝜌,𝑑)} ⊎ Λ

(𝜌′,𝑑)
−−−−→ {(𝜌 ′, 𝑑)} ⊎ Λ if 𝜌 ⊆ 𝜌 ′.

We say that Λ is consistent if, given a total firing map 𝜌 , there
exists at most one pair (𝜌 ′, 𝑑) ∈ Λ such that 𝜌 ′ ⊆ 𝜌 . Then, if
Λ is consistent, we write Λ(𝜌) ∈ O(D) to denote the value
𝑑 if there exists (𝜌 ′, 𝑑) ∈ Λ with 𝜌 ′ ⊆ 𝜌 , and to denote the
value ★ otherwise.

Lemma 3.1. For all (𝜌, 𝑑), if Λ
(𝜌,𝑑)
−−−−→ Λ′ and Λ is consistent,

then Λ′ is consistent.

We now define, on a list of components, the constraints
of valid causality and one step look ahead. We useM to
range over configuration whereM(𝑐) ⊆ Σ returns a set of
states for a primitive component 𝑐 , andM(𝑝) returns a set
of pairs of a firing map 𝜌 and a port value 𝑑 ∈ D for a port
𝑝 ∈ 𝑃 . Let 𝑐 ∈ 𝐶 and assume that unless stated otherwise,
M ′(𝑥) =M(𝑥) for all 𝑥 . We define a configuration relation
satisfying the following four rules.

A component may freely do an internal transition (rule 1):
M(𝑐) ↠M ′(𝑐)
M ⇒M ′ (1)

A component may put a value on a port (rule 2) if its firing
map updates the current port configuration:

M(𝑐)
(𝜌,𝑝!𝑑)
↠ M ′(𝑐), M(𝑝)

(𝜌,𝑑)
−−−−→M ′(𝑝)

M ⇒M ′ (2)

Rule 2 allows a component to put on a port if and only if
the port has a corresponding valid transition. Note that if
there is no valid transition for the port, then the component
cannot put its value and blocks. The last operational rule
in Figure 4 enables speculation on an arbitrary port for a
component. It is, therefore, entirely possible for a component
to keep speculating (adding firing information in its firing
map) until a put operation succeeds.
A component may get a value (rule 3) that is currently

stored in the port configuration only if its firing map occurs
in the configuration of the port:

M(𝑐)
(𝜌,𝑝?𝑑)
↠ M ′(𝑐), (𝜌, 𝑑) ∈ M(𝑝)
M ⇒M ′ (3)

Observe that rule 3 equates the firing map on the transition
of the component 𝑐 with the firing map in the store of port
𝑝 . Similarly as for rule 2, a component may speculate on the
firing of a port that is not in its interface with the last rule
of Figure 4. Practically, as detailed in Section 4, an exchange
of information occurs between the port and a component, to
construct the smallest extension of a valid firing map.

Finally, a component may synchronize (rule 4) if and only
if all other involved components synchronize with the same
firing map. As a result, the port configuration is reset to the
empty set and the global assignment is exposed as the label
of the transition:

∃𝜌.
∀𝑐 ∈ 𝐶.M(𝑐)

(𝜌,✓)
↠ M ′(𝑐)

∀𝑝 ∈ 𝑃 .M ′(𝑝) = ∅ ∧ ¬𝜌 (𝑝) ⇐⇒ 𝑣 (𝑝) = ★∧
𝑣 (𝑝) =M(𝑝) (𝜌)

M 𝑣⇒M ′
(4)

Observe that the assignment 𝑣 is well defined sinceM(𝑝) is
consistent for every 𝑝 ∈ 𝑃 .

Lemma 3.2. Let 𝐶 be a composite component andM a con-
figuration. Then, M 𝑣⇒ M ′ with total firing map 𝜌 as a
witness of the synchronization if and only if for all 𝑐 ∈ 𝐶 there

exists (𝜌, 𝜇𝑐 , 𝑠𝑐 , 𝑆𝑐 ) ∈ M(𝑐) such that (𝜌, 𝜇𝑐 , 𝑠𝑐 , 𝑆𝑐 )
(𝜌,✓)
−−−−→

(∅, ∅, 𝑠 ′𝑐 , 𝑆 ′𝑐 ) and for all 𝑝 ∈ I(𝑐), 𝜇𝑐 (𝑝) =M(𝑝) (𝜌).

Proof. See appendix. □

Rule 4 together with the small-step operational semantics
of Figure 4 entails the property stated in Lemma 3.2, that a
total firing map is sufficient for each primitive component
to enter in communication and exchange valid messages on
shared ports.

We useM 𝑟⇒∗ M ′ to denote the 𝑛 successive applications
of⇒ whose sequence of labels is the sequence 𝑟 . We write
M 𝑟⇒∗ if there existsM ′ such thatM 𝑟⇒∗ M ′, and for all
sequences of assignments 𝑟 ′ there does not existM ′′ such
thatM ′ 𝑟 ′⇒∗ M ′′. We useM 𝜎⇒𝜔 if, for any 𝑛 ∈ N, there
existsM ′ such thatM 𝑠⇒∗ M ′ with 𝑠 = ⟨𝜎 (0), ..., 𝜎 (𝑛 − 1)⟩.
Given 𝐶 = 𝑆1 ∩ ... ∩ 𝑆𝑛 , we use [[[𝐶]]] to denote the set:

[[[𝐶]]] = {𝑠 | M 𝑠⇒∗} ∪ {𝜎 | M
𝜎⇒𝜔 }

where M quantifies over all initial configurations of the
formM(𝑐) = {(∅, ∅, 𝜄𝑐 , 𝑆𝑐 )} andM(𝑝) = ∅ for all primitive
component 𝑐 ∈ 𝐶 and 𝑝 ∈ 𝑃 .

Theorem 3.3. For any component 𝐶 , [[[𝐶]]] ∩ J𝜔K ⊆ J𝐶K.

As previously stated, the idealistic and realistic semantics
differ in the class of behavior that each captures. Theorem 3.3
states that every infinite run operationally constructed with
the realistic semantics is also an element of the idealistic
semantics. There is a class of components 𝐶 such that the
converse holds, and [[[𝐶]]] ∩ J𝜔K = J𝐶K. Those components
are such that every run satisfies the causality imposed by
the realistic semantics, and all the put and get operations
are paired with a corresponding receiver and sender. We
call such component causal and closed. Section 4 proposes
a runtime to distribute and execute such causal and closed
composite component.
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4 Distributed Runtime
In Section 3 we defined the realistic semantics of PDL, which
generates runs given a protocol. It relies on trivial access to
the configuration, making it suitable for an implementation
in shared memory. In this section, we adapt the realistic se-
mantics to a context in which the configuration is distributed
over a physical network. This forms the basis of a distributed
runtime which serves as the platform that drives the com-
munications between a set of distributed applications given
their distributed, shared protocol, specified just in time.

Distributed primitives. In this setting, each primitive
in a protocol works autonomously within its own memory
space, unable to directly act on the contents of its peers’ mem-
ory. Primitives can work together indirectly by sending and
receiving control messages; note that these are distinct from
the messages that components put and get at ports. A sys-
tem of distributed primitives consists of nodes in a transport
graph whose edges characterize neighboring primitive pairs,
sufficiently aware of each other to exchange control mes-
sages. We assume that every primitive can send itself control
messages, i.e., each primitive is its own neighbor.
The transport of control messages is assumed to be re-

liable, i.e., all messages sent are eventually received after
some finite time, but not necessarily in the same order as
they were sent. Neighbors 𝐴 and 𝐵 can cooperate to realize
the reliable transmission of control message𝑚 from 𝐴 to 𝐵
as follows. 𝐴 repeats𝑚𝑠𝑔(𝑚) at regular intervals until it re-
ceives 𝑎𝑐𝑘 (𝑚). 𝐵 sends 𝑎𝑐𝑘 (𝑚) whenever it receives𝑚𝑠𝑔(𝑚).
Later in this section, we require that control messages sent
during a round must be received within that round only, i.e.,
control messages from previous rounds are ignored. This
can be achieved by numbering each control message with
the round number in which it was sent. Recipients discard
incoming messages with an old round number.

For convenience, we introduce replication as an abstraction
over control message exchange. Neighbors 𝐴 and 𝐵 main-
tain an eventually-consistent replica of a set 𝐸 as follows if
(1) both replicas are initially consistent, and (2) elements are
never removed from a replica. For each element 𝑒 added by
𝐴 to its replica, 𝐴 sends a control message to 𝐵 instructing 𝐵
to likewise add 𝑒 to its replica. The eventual consistency of
𝐸’s replicas follows from reliability. To replicate a (partial)
function, it suffices to replicate its set of input-output pairs.

Decision tree. As a given protocol may denote several
acceptable runs, generating the next step requires a decision,
selecting one in particular. In the case of shared memory,
it suffices for the system as a whole to decide arbitrarily.
However, distributed primitives arriving at the same deci-
sion presents a consensus problem. We opt to centralize the
decision at a fixed leader primitive, whose arbitrary decisions

Amy Bob Cho

Dan Eli

𝑝0

𝑝1
𝑝2 𝑝3

𝑝4

𝑝5

Figure 5. Example of a transport graph (black, solid edges)
overlaid by a decision tree (blue, dashed edges), and linkage
(red, dotted edges and port labels 𝑝0−5).

are adopted by all other primitives. This can be understood
as indirectly ordering steps by directly ordering primitives.2

We say a graph is overlaid atop another if both have iden-
tical nodes, and each edge in the former corresponds to an
edge in the latter.We designate the root of a fixed decision tree
𝐺𝐷 overlaid atop a transport graph as the leader of the latter
graph. Note that a decision tree is necessarily contiguous3,
i.e., there exists a path in the tree between each pair of primi-
tives. A decision tree orders the set of primitives by breaking
the symmetry between parents and children, and defining a
path for each primitive to and from the leader. Later, we take
for granted that all primitives are able to come to consensus
on a value following the leader’s decision, propagated using
the wave algorithm, centralized at the leader. [22] Figure 5
gives an example of an overlaid decision tree.

Linkage. Thus far, we imposed no restriction on primi-
tives’ access to ports. However, there is value in prescribing
a unique putter and getter per port 𝑝 . Concretely, a given
linkage 𝐿 : 𝑃 → B→ 𝐶 allows a component 𝑐 if and only if
∀𝑝 ∈ I(𝑐), 𝑐 ′ ∈ 𝑝𝑟𝑖𝑚(𝑐) : (𝑝 ∈ I𝑝 (𝑐 ′) → 𝐿(𝑝) (⊥) = 𝑐 ′) ∧
(𝑝 ∈ I𝑔 (𝑐 ′) → 𝐿(𝑝) (⊤) = 𝑐 ′), where 𝑝𝑟𝑖𝑚(𝑐) returns the
primitives of component 𝑐 . We say port 𝑝 links its putter 𝑐𝑝
to its getter 𝑐𝑔 when 𝐿(𝑝) (⊥) = 𝑐𝑝 ∧𝐿(𝑝) (⊤) = 𝑐𝑔 . A linkage
can inform the distribution of port information over prim-
itives. Figure 5 gives an example of a linkage depicted as
a graph overlaid atop a transport graph, with each port 𝑝
depicted as a 𝑝-labeled edge, directed from putter to getter.

Note that there may not exist a linkage that allows a given
component 𝑐 , specifically, if two of 𝑐’s primitives both put
or both get at some port. However, given a component 𝑐 ,
we can derive a component 𝑐 ′ and a linkage 𝐿, such that
I(𝑐 ′) ⊆ I(𝑐), and 𝑐 ′ has the same behavior after hiding all
of its ports not in I(𝑐). Intuitively, the procedure works by
mapping a port with multiple putters and/or multiple getters
into several ports, whose values are then kept equivalent by
newly-added primitives. This is the same scheme used in the
definition of the coloring semantics of Reo [16].

2Consensus follows if one directly orders steps. For example, each primitive
selects the maximum. However, this requires that all steps be known, which
is far less practical than requiring that all primitives be known.
3We use ‘contiguous’ for what is often called ‘connected component’ in the
literature to avoid confusion with out notion of ‘component’.
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Given the protocol definitions of 𝑆𝑎𝑚𝑒 and 𝑅𝑒𝑝 of Figure 1,
let 𝑐 ′ be initialized to 𝑐 , and then modified as follows:
• While primitives 𝑐1 and 𝑐2 of 𝑐 ′ put at port 𝑝:
Take fresh ports {𝑝1, 𝑝 ′1, 𝑝2, 𝑝 ′2}. Replace occurrences of
𝑝 within puts in 𝑐1 and in 𝑐2 to 𝑝1 and 𝑝2 respectively.
Finally, replace 𝑐 ′ with 𝑐 ′ ∩ 𝑆𝑎𝑚𝑒 (𝑝 ′1, 𝑝 ′2, 𝑝).
• While primitives 𝑐1 and 𝑐2 of 𝑐 ′ get at port 𝑝:
Take fresh ports {𝑝1, 𝑝 ′1, 𝑝2, 𝑝 ′2}. Replace occurrences
of 𝑝 within get in 𝑐1 and in 𝑐2 to 𝑝1 and 𝑝2 respectively.
Finally, replace 𝑐 ′ with 𝑐 ′ ∩ 𝑅𝑒𝑝 (𝑝, 𝑝 ′1, 𝑝 ′2).

After each step, 𝑝 has one fewer putter or getter in each
case, respectively. Each fresh port always has one of each.
Ultimately, each port in I(𝑐 ′) has at most one putter and
one getter. As such, a linkage allowing 𝑐 ′ necessarily exists.
As expressed by Lemma 4.1, the behaviors of 𝑐 and 𝑐 ′

are equivalent once the added fresh ports are hidden in 𝑐 ′.
This is because the added primitives preserve the equality
of values at ports that were previously not distinguished,
and introduce causal dependencies only for gets on their
respective puts, as is also the case in 𝑐 .

For simplicity henceforth, we assume that primitive 𝑐 puts
at a port 𝑝 if and only if 𝑐 is 𝑝’s putter, and likewise for get.
Lemma 4.1. For all 𝑐 ∈ 𝐶 , J𝑐K = J∃𝑝1. ... ∃𝑝𝑛 . 𝑐 ′K where
I(𝑐 ′) \ I(𝑐) = {𝑝1, ..., 𝑝𝑛}.

Step generation. A session S = (𝑐,𝐺𝑇 ,𝐺𝐷 , 𝐿) consists of
a protocol 𝑐 decomposed into primitives which are the nodes
of a transport graph 𝐺𝐷 , overlaid by a decision tree 𝐺𝑇 and
a linkage 𝐿, where 𝐿 allows 𝑐 , and all links are neighbors.

We adapt the realistic semantics of PDL to generate a run
from the session’s protocol. In this context, the execution at
large emerges from the actions of its constituent primitives.
A run is computed incrementally, through each primitive’s
participation in two concurrent step procedures: distributed
and centralized. These procedures partition the task of ap-
plying rules 1–4 defined in Section 3.

Step generation: decentralized. The decentralized pro-
cedure applies rules 1–3, each of which requires access to
only one primitive’s state. As such, each primitive 𝑐 applies
only rules matching M(𝑐) to explore only its own state
space. In this procedure, each primitive interacts with its
peers only viaM(𝑝), which may be replicated by a neighbor.
Concretely, for each port 𝑝 ,M(𝑝) is replicated by primitives
𝐿(𝑝) (0) and 𝐿(𝑐) (1). In this manner, neighboring primitives
cooperate in the exploration of their respective state spaces;
puts at 𝑝 write elements toM(𝑝) for 𝑝’s getter to read.

Step generation: centralized. The centralized procedure
aggregates information at the leader until it is sufficiently
informed to apply rule 4. This occurs once per completed
round, and results in all primitives updating their own states
to reflect the newly-identified step in the run.
We say a firing map 𝜌 satisfies a primitive 𝑐 if and only

if 𝑐 has explored a state matching (𝜌 ′, 𝜇, 𝑠, sync ; 𝑆) where

𝜌 ′ ⊆ 𝜌 . We say a firing map 𝜌 covers a primitive 𝑐 if and
only if I(𝑐) ⊆ 𝑑𝑜𝑚(𝜌). By a solutionwe refer to a firing map
that satisfies and covers all primitives. By Lemma 3.2, each
solution in a round corresponds to a particular step. Thus, it
suffices for primitives to reach consensus on a solution; recall
that this follows from the leader identifying and deciding on
a solution. A firing map 𝜌 is a candidate of a primitive 𝑐 if 𝜌
satisfies and covers each primitive in the decision sub-tree
rooted at 𝑐 . In the following, we give an algorithm such that
the leader can discover its candidates. This suffices, as we
show that the leader’s candidates coincide with solutions.
A candidate is defined in terms of a global view on the

decision tree, which is useful for characterizing solutions.
However, 𝑐’s candidates are defined in terms of information
not always local to 𝑐 . To proceed, we introduce an invariant,
per primitive 𝑐 , whose preservation requires only 𝑐-local
information. Next, we extend the configuration to include
N , such that N(𝑐) returns the set of 𝑐’s candidates, for each
primitive 𝑐 .N is distributed such thatN(𝑐) is replicated at 𝑐
and 𝑐’s parent (if it exists). Observe that this lets primitives
read the candidate sets of their children. For brevity, let 𝐹 (𝑐)
return the firing maps that cover and satisfy primitive 𝑐 ; this
information is unfolded by the distributed procedure. Fur-
thermore, let 𝑄 (𝑐) return a list of firing map sets, including
𝐹 (𝑐), and N(𝑐 ′) for each 𝑐 ′ child of 𝑐 . 𝑄 (𝑐) can be under-
stood as containing all the information from which N(𝑐)
can be derived. Let each primitive 𝑐 continuously update 𝑐
to preserve the following invariant equality:

N(𝑐) = { ∀𝑞 ∈ 𝑄, ∃𝜌 ′ ∈ 𝑞 : 𝜌 ′ ⊆ 𝜌 }

Lemma 4.2. For all component 𝑐 , 𝜌 ∈ N (𝑐) if and only if,
for all 𝑐 ′ in the decision sub-tree rooted at 𝑐 , then 𝜌 ∈ N (𝑐 ′).

To see that Lemma 4.2 follows from the invariant for any
primitive, it suffices to rewrite occurrences of N(𝑐) for all 𝑐
from left to right, and to expand the quantification of 𝑞. It
becomes clear that by this inductive definition, candidates
cover and satisfy the expected set of primitives. This is ap-
parent for a primitive 𝑐 with no children, as N(𝑐) = 𝐹 (𝑐).
Each primitive 𝑐 preserves the equation by monitoring

𝑄 (𝑐) and adding candidates to N(𝑐) as follows. Initially, no
primitive has a candidate, as no states have been explored;
thus the lemma trivially holds at the start of the round. As
the set of explored states only grows, each primitive’s can-
didates only grows. It suffices for primitive 𝑐 to monitor
the sets in 𝑄 (𝑐) for new additions, and react by accordingly
adding elements to N(𝑐). Observe that is it never necessary
to add 𝜌 to N(𝑐) if 𝜌 ′ is already present, and 𝜌 ⊆ 𝜌 ′. This
is because no primitive can be satisfied and covered by the
former and not the latter. This observation allows for a sub-
stantial reduction in the number of candidates of non-leader
primitives, without affecting the leader’s decision.

Application primitives. We extend the execution of a
protocol in a session to include application primitives, each
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representing a user application as a participant in the session.
Such a primitive is characterized by its protocol 𝑐𝑎 being
unspecified ahead of time. Rather, 𝑐𝑎 unfolds up to the end of
a round just as the round begins. This unfolding is facilitated
by synchronization, a procedure exposed by the connector
API, whose input specifies 𝑐𝑎 up to its next sync statement.
For example, below, defines 𝑐0𝑎 = 𝑐𝑎 as round 0 begins, 𝑐1𝑎 as
round 1 begins, and so on:

𝑐0𝑎 =𝑚0 → 𝑝0 ;𝑚1 → 𝑝1 ; assert ¿𝑝2 ; sync ; 𝑐1𝑎
As desired, the connector API can be simplified at the cost

of application expressiveness. For example, the connector
computes the definition of 𝑐0𝑎 above, given only the subset of
firing ports inI(𝑐𝑎), and prescribing eachmessage produced:
({𝑝0 ↦→𝑚0, 𝑝1 ↦→𝑚1}, {𝑝2}).
Once the round is completed, synchronization returns the

decided step projected onto I(𝑐𝑎), such that the application
can reflect on the outcome, e.g., by reading a port’s message.
This approach results in cooperative scheduling between an
application and its connector: synchronization passes control
flow back and forth. Primitives speculate ‘during’ a round,
and applications reflect on previous rounds and prepares for
the next round ‘between’ rounds.

Session setup. Initially, a session consists only of applica-
tion primitives, isolated in the transport graph, and with no
ports in the linkage. In the initial setup phase, applications
can cooperate to add a fresh port, its link, and the underly-
ing transport edge (if it does not already exist) all together.
Concretely, each connector is given as input: (1) the iden-
tity of the other primitive, and (2) the direction of the link.
An implementation may identify primitives using IPv4 or
similar addresses; identifiers of some sort are necessary to
facilitate consensus, as the literature shows that consensus in
arbitrary contiguous networks is impossible otherwise. [22]
To ensure that the applications have a consistent view on the
link direction, each of their primitives informs the other of
the expected direction in a control message; the procedure
fails if the primitives learn that their expectations differ.
If the transport graph is contiguous, its primitives can

complete the session setup together through the decentral-
ized construction of the decision tree. First, a leader is elected
using Chang’s echo algorithm with extinction [14]. This re-
quires that primitives’ identifiers are ordered. Second, the
echo algorithm [22] is initiated by the leader, identifying the
parents and children of each primitive amongst its neighbors.

Session transformation. An application primitive 𝑐𝑎 can
introduce new ports and primitives without disturbing its
neighbors. It can do so before or after the session setup. In
the first case, it adds a fresh port 𝑝 to I(𝑐𝑎), and updates the
linkage such that 𝐿(𝑝) (⊥) = 𝐿(𝑝) (⊤) = 𝑐𝑎 . In the second
case, it adds a new component 𝑐𝑏 to the session’s protocol 𝑐 ,
updating 𝑐 to 𝑐 ∩ 𝑐𝑏 . The 𝑐𝑏 becomes 𝑐𝑎’s (1) neighbor in
the transport graph, and (2) child in the decision tree. In

the process, 𝑐𝑎 may choose to replace any subset of occur-
rences of 𝑐𝑎 with 𝑐𝑏 in its links, transferring access to a
subset of 𝑐𝑎’s ports to 𝑐𝑏 . We assume the affected links still
correspond to edges in the transport graph.4 We extend this
functionality such that applications can also add composite
protocols by decomposing each into a set of primitives. The
connector must take extra care to preserve linkage, e.g., by
pre-processing the protocol as previously described.

Arbitrary transformations of the session are significantly
more invasive and complex, necessitating delicate distributed
procedures. Earlier work on dynamic reconfiguration of Reo
circuits [11, 30–32] shows that such transformations are pos-
sible, laying the groundwork for the same in Reowolf. In
future, we will investigate the application of graph rewriting
techniques in general [20] such as PBPO+ in particular [36]
to manipulate regions of the transport graph. The power to
alter the session dynamically adds a great deal of flexibility.
As in [35], we are particularly interested in session trans-
formations that have no effect on behavior observable to
applications, but are otherwise more desirable. As a simple
example, one edge in the decision tree is inverted, reduc-
ing the lengths of paths to the leaves, resulting in rounds
completing more quickly. For a more realistic example, con-
sider a session transformation that moves a filter component
physically closer to the source of its incoming messages.

Distributed timeout. In general, a round may continue
for an arbitrary duration without the leader making a deci-
sion. Whether or not a solution exists to be found, an appli-
cation may wish to trigger a distributed timeout in order to
restart the round, potentially providing their primitive with
a different protocol specification.
During a round, a primitive can send a timeout request

control message through the decision tree to the leader. Upon
receipt, if no decision has yet been made, the leader decides
on a timeout, which results in consensus as usual. The result-
ing distributed timeout restores the configuration to that of
the start of the round. Although this distributed procedure
may take an arbitrary duration, it is short in practice, as its
involves very little work per primitive.

5 Evaluation & Future Work
Sections 1–4 define PDL and explain its usage for driving
communications between networked applications. In this
section, we evaluate the strengths and weaknesses of this
contribution, and outline promising future developments.

Strengths. Connectors are sufficiently practical to afford
a systems-level, distributed implementation. This is evidenced
by the completion of a prototype implementation, along with

4To relax this assumption, replication must be extended to any pair of
primitives. This can be achieved via the transitive closure of replication, i.e.,
a pair can replicate 𝐸 if all primitives in a path between them replicate 𝐸.
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a technical report which includes the results of experimen-
tal testing. These work products are publicly available in a
persistent Zenodo repository [1].
By orienting their API around protocols, connectors nar-

row the gap between an application’s implementation, and
the specification of its high-level properties. This makes
applications more high-level, thus, more maintainable and
re-usable. Furthermore, one can reason about the high-level
properties of sessions via their specifications. In future, we
want middleware to automatically leverage the given proto-
cols to apply optimizations at run-time. We are particularly
interested in optimizations arising from the composition of
multiple applications’ protocols.
The connector API affords applications great flexibility,

letting them interleave their communications with the addi-
tion of protocols to be preserved. Later, we want to increase
this flexibility to enable transformations of an ongoing ses-
sion’s protocol. Applications are also free to form sessions
by identifying only their neighbors.

The distributed procedures driving the runtime are largely
decentralized, with primitives exchanging control messages
with their neighbors concurrently. Furthermore, each primi-
tive explores paths through its state space concurrently. As a
result, rounds can progress quickly by the leader deciding on
solutions found quickly; the existence of complex solutions
does not impede progress of simpler ones.

Weaknesses. A small but crucial part of the distributed
runtime involves a centralized decision event. Thus, the de-
cision tree is a single point of failure. With some adjustment,
the runtime can re-create the decision tree on demand to
bypass any failed nodes and edges, using any of several dis-
tributed algorithms [8, 9, 23]. However, we expect that the
decision tree cannot be dynamic without incurring signifi-
cant overhead. In future work we will explore empowering
applications to strike the balance themselves.

Currently, causal consistency is not preserved by protocol
composition. As a result, not all desirable properties are char-
acterized by a protocol without context. In future work we
will further develop PDL, exploring changes that either make
causality more explicitly expressed, or relax the need for runs
to be causally consistent. In investigating the latter, we can
continue to draw from work on constraint solving. [33]
Currently, connectors provide strong consistency guar-

antees, but use only one round look-ahead into protocols,
and all primitives must participate to complete the round.
In future, we want to generalize look-ahead, and let primi-
tives be replicated over physical nodes, such that progress
is robust to the failure of physical nodes and channels. Fur-
thermore, we want to investigate relaxations of PDL that let
some primitives progress, while leaving others behind, such
that overall progress is not inhibited by slow primitives.
As protocols cannot be simultaneously mutable and im-

mutable, session re-configuration and optimizations that

leverage the preservation of protocols are mutually-exclusive
features. In future work we will explore letting applications
make this trade-off per protocol, as best suits their needs.

6 Related Work
This section compares the approach of Reowolf to that of
several works with comparable problems or solutions.

Multi-party session types. Session types apply estab-
lished type-checking disciplines to message-passing between
networked processes. [18] The behavior of a process or chan-
nel endpoint is specified by a (local) session type used to
check the correctness of the process’s implementation. The
trick is to assign types such that correctness of a session’s
behavior follows from that of its processes. Later work [26]
introduced global session types (‘GST’) for characterizing
communications between any number of peers. Projection
of a GST onto each of a session’s processes assigns it a local
session type used to check local correctness as before.
GSTs and PDL have in common that they formalize the

behavior of multi-party sessions, and are ultimately used
to ensure that programs behave as specified. However, they
differ in specificity, and in which context they are used. Both
GSTs and PDL protocols can express choice by defining their
behavior as a function of values chosen at runtime. PDL
protocols express choice by reflecting on the messages they
observe at their ports; they are able to constrain the choice
made through assertions, but there is no specification of how
the choice is made. In contrast, GSTs associate choices with
message values originating at a specified sender, thereby
fixing the sender as being solely responsible for making the
choice. This demonstrates how PDL relies more extensively
on its runtime system for its execution.
Ongoing work in session types muddies the aforemen-

tioned distinctions between PDL and GSTs, introducing GST
variations that don’t prescribe which process makes a choice.

SoftwareDefinedNetworks (SDN). SoftwareDefinedNet-
works [27] distinguish between the control and data planes.
On the control plane, messages are exchanged to update the
configuration of some devices on the network; while the data
plane deals with communication protocols. As an example,
OpenFLow is a control protocol used for remote administra-
tion of switch’s packet forwarding tables. Rules can be made
separately on a controller, and dynamically pushed to the
switches on a network, changing therefore the routing algo-
rithm [34]. SDN comes also together with the virtualisation
of network functions (also abbreviated NFV). The OpenStack,
mainly maintained by Cisco, is a set of virtualized network
services that can be deployed and configured remotely.

SDN and Reowolfmainly differ in their purpose. SDN eases
the administration of networks, while Reowolf enables multi-
party synchronous communications. They both, however,
aim at taking networks and protocols as a first class concepts

11
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in their solutions (applications barely talk about sockets in
SDN, but more about quality requirements).

Synchronous languages. Besides Reo [2–4], otherworks
have been done on the design of synchronous languages. For
instance, the imperative language Esterel [7], and the declar-
ative language LUSTRE [12], are languages whose semantic
models are similar to ours, in that they consider histories as
infinite sequences of port assignments [6]. The difference is
mainly in how each model generates such histories. Esterel
and LLUSTRE use a clock synchronization mechanism. Our
work differs in that in our model time is not explicit, but im-
plicitly progresses via sync statements: only by performing
sync all components synchronize.

Linda. Linda is a coordination language [10] whose prim-
itives communicate asynchronously through a shared data
space (called tuple space). Processes generate messages in
the tuple space, which are eventually withdrawn by other
processes. The operation of sending a message to the tuple
space is non-blocking, while reading and removing messages
may block. Synchrony in Linda is thus modeled as a sequence
of send and receive operations between two processes.

Bulk Synchronous Parallel (BSP). BSP was an architec-
ture suggested by Valiant in [39]. The idea was to build a con-
ceptual bridge between software and hardware (analogous to
Von Neumann architecture for sequential computation) for
parallel computation. The architecture led to BSPlib, a library
used for parallel computation [25], in which synchroniza-
tion is separated from communication. A BSP computation
consists of a sequence of parallel supersteps. A supersteps
contains, in order, a phase of local computation at each pro-
cess, a phase of communication between processes, and bar-
rier synchronization among the processes. Reowolf has in
common with BSP that multi-party synchronization is a fea-
ture of the language. However, BSP restricts to processes
within the same machine and, to our knowledge, does not
consider an implementation over an IP network. Moreover,
BSP mainly does not consider data synchronization, while
our runtime includes speculation and constraint solving.

MPI. Message passing interface (MPI) was developed in-
crementally throughout the 1990’s. It is an interface for en-
abling a programming model for communicating synchro-
nous [24], particularly popular in computational science.
MPI and Reowolf’s connectors have in common that they
provide an abstraction over a multi-party session in which
user applications exchange messages. MPI-2 lets processes
dynamically instantiate other processes, much as Reowolf
lets components instantiate other components. MPI offers
variations of message-passing operations; in their applica-
tions, programmers effectively configure their usage of MPI’s
network abstraction to maximize runtime performance.
Reowolf differs from MPI in unifying the two features

above into the activity of adding protocols to the session,

(1) specifying behavior, and (2) delegating work to a new
entity. These two activities coincide to enable reasoning
about the latter in terms of reasoning about the former.

OpenMP. OpenMP is anAPI for introducingmulti-threaded
parallelism into sequential implementations with minimal
impact on the source code. [13] For example, a C program-
mer annotates a for-block with the parallel for compiler
directive, partitioning the work of the loop body over a set
of worker threads. These directives accept keyword anno-
tations on local variables, providing programmers control
over how values are replicated and accessed by workers.

OpenMP and Reowolf have in common that they introduce
a high-level language for coordinating concurrent processes,
aiming to minimize the coupling between the computational
task and inter-worker coordination. However, OpenMP dif-
fers from Reowolf in the task it aims to simplify. OpenMP
eases static reasoning about a large code base. Reowolf eases
reasoning about the behavior of modular components as part
of a larger network context to be realized at runtime.

7 Conclusion
Connectors show promise as a multi-party session abstrac-
tion, interfacing the transport layer below with the applica-
tion layer above. Like sockets, connectors facilitate message
passing between their applications, distributed over physical
networks such as the Internet. Unlike sockets, the connector
API is oriented around applications dynamically adding PDL
protocols to be preserved in the session. Two objects coin-
cide in a protocol: (1) a specification of a session’s properties,
and (2) a distributed program a session can execute.
Via connectors, protocols become a powerful vehicle for

capturing and communicating the application’s requirements
in the OS and further into the network. On the one hand,
applications consequently have more flexible and abstract
implementations, becoming easier to maintain and alter. On
the other hand, the runtime gets insight into the applications’
requirements. There is much future work to be done to con-
tinue to exploit this insight, for example, by transparently
optimizing the efficiency of an ongoing session. This also
includes developments to mitigate the current weaknesses.
For example, the distributed runtime must be made more
flexible to changes in the physical network. Further oppor-
tunities are expected to arise from the PDL, as it expands to
capture new high-level protocol properties.

These contributions build on previous work to develop a
paradigm in which network protocols are concrete artifacts.
Our ambition is to cover as much of the OSI network stack as
possible, such that communications over the Internet become
more high-level, reliable, transparent, and efficient.
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Appendix
Proof sketch for Theorem 2.1. We proceed inductively on the
structure of the statement, and show that for all 𝜎 ∈ Δ,
𝜎 ∈ J𝑆K if and only if there exist 𝑠 ∈ Σ and 𝜏 such that
((𝑠, 0), 𝜎, 𝜏) ∈ [𝑆]. We give the proof for the branching, se-
quential, and loop constructs. We use 𝑠 to denote an arbitrary
state in Σ, and 𝜏 and 𝜆 for arbitrary streams of states in O(Σ).
Case if 𝑏 then 𝑆1 else 𝑆2 fi. Suppose that J𝑆1K = {𝜎 |
( (𝑠, 0), 𝜎, 𝜏) ∈ [𝑆1]} and J𝑆2K = {𝜎 | ( (𝑠, 0), 𝜎, 𝜏) ∈ [𝑆2]}. We
fix 𝑠 ∈ Σ, then
Jif 𝑏 then 𝑆1 else 𝑆2 fiK

={𝜎 | (𝜎, 𝑠, if 𝑏 then 𝑆1 else 𝑆2 fi) ↓}
={𝜎 | (𝜎, 𝑠, 𝑆1) ↓ and J𝑏K(𝜎 (0), 𝑠) = true}∪
{𝜎 | (𝜎, 𝑠, 𝑆2) ↓ and J𝑏K(𝜎 (0), 𝑠) = false}

={𝜎 | ( (𝑠, 0), 𝜎, 𝜏) ∈ [𝑆1] and J𝑏K(𝜎 (0), 𝑠) = true}∪
{𝜎 | ( (𝑠, 0), 𝜎, 𝜏) ∈ [𝑆2] and J𝑏K(𝜎 (0), 𝑠) = false}

={𝜎 | ( (𝑠, 0), 𝜎, 𝜏) ∈ [if 𝑏 then 𝑆1 else 𝑆2 fi]}

Case 𝑆1 ; 𝑆2. Suppose that J𝑆1K = {𝜎 | ( (𝑠, 0), 𝜎, 𝜏) ∈ [𝑆1]}
and J𝑆2K = {𝜎 | ( (𝑠, 0), 𝜎, 𝜏) ∈ [𝑆2]}. We fix 𝑠 ∈ Σ, then
J𝑆1 ; 𝑆2K is the set

{𝜎 | (𝜎, 𝑠, 𝑆1 ; 𝑆2) ↓}
= {𝜎 | (𝜎, 𝑠, 𝑆1, ∅) −→ (𝜎2, 𝑠 ′,✓, ∅) and(𝜎2, 𝑠 ′, 𝑆2) ↓}
∪ {𝜎 | (𝜎, 𝑠, 𝑆1, ∅) = (𝜎0, 𝑠0, 𝑆1,0, ∅) and
∀𝑛.∃𝑚.(𝜎𝑛, 𝑠𝑛, 𝑆1,𝑛, ∅) −→𝑚 (𝜎𝑛+1, 𝑠𝑛+1, 𝑆1,𝑛+1,✓)}

We first observe that if (𝜎, 𝑠, 𝑆1, ∅) −→ (𝜎2, 𝑠 ′,✓, ∅) then 𝜎2
is a postfix of 𝜎 , and there exists a 𝑗 ∈ N such that the 𝑗-th
derivation of 𝜎 is 𝜎2, i.e., 𝜎 ( 𝑗) = 𝜎2. Therefore, [𝑆1] ◦ [𝑆2] is
the set

{(𝜏, 𝜎, 𝜆) | (𝜏, 𝜎, (𝑠 ′, 𝑗)) ∈ [𝑆1] and ((𝑠 ′, 𝑗), 𝜎, 𝜆) ∈ [𝑆2]}
={(𝜏, 𝜎, 𝜆) | (𝜏, 𝜎, (𝑠 ′, 𝑗)) ∈ [𝑆1] and ((𝑠 ′, 0), 𝜎 ( 𝑗) , 𝜆) ∈ [𝑆2]}
={((𝑠, 0), 𝜎, 𝜆) | (𝜎, 𝑠, 𝑆1, ∅) −→ (𝜎 ( 𝑗) , 𝑠 ′,✓, ∅) and
(𝜎 ( 𝑗) , 𝑠 ′, 𝑆2) ↓ and 𝜆 = ★ or

𝜆 is final state after S2 terminates.}
We then observe that the condition of always eventually tick-
ing can be written as always eventually the oracle progresses,
i.e.,∀𝑛.∃𝑚.(𝜎 (𝑘) , 𝑠𝑛, 𝑆1,𝑛, ∅) −→𝑚 (𝜎 (𝑘+1) , 𝑠𝑛+1, 𝑆1,𝑛+1,✓). There-
fore, given the initial state 𝑠 and the statement 𝑆1, the ora-
cle stream 𝜎 is non-terminating but accepting, which corre-
sponds to the elements ((𝑠, 0), 𝜎,★) ∈ [𝑆1]. Thus,

J𝑆1 ; 𝑆2K = {𝜎 | (𝜏, 𝜎, 𝜆) ∈ [𝑆1 ; 𝑆2]}

Case while 𝑏 do 𝑆 od. Suppose that J𝑆K = {𝜎 | (𝜆, 𝜎, 𝜏) ∈
[𝑆]}.We distinguish two kinds of valid runs inwhile𝑏 do 𝑆 od:
either the run terminates; or the run does not terminate
but synchronize infinitely often. Using standard proof meth-
ods, we can show that the first class of runs is captured

by
⋃∞

𝑘=0 [(while 𝑏 do 𝑆 od)𝑘 ], which contains some 𝜎 such
that (𝜎, 𝑠,while 𝑏 do 𝑆 od) ↓. For the second class of ac-
cepting runs, we show that the class coincides with the set⋂∞

𝑘=0 prog(𝑆, 𝑘)†.
We use the syntax 𝑆𝑘 as defined earlier. Let Jwhile 𝑏 do 𝑆 odK
be the set {𝜎 | (𝜎, 𝑠,while 𝑏 do 𝑆 od) ↓} defined as the
union of two sets: 𝐹 which is the set of finite runs, and
𝐼 which is the set of infinitely productive runs. We have
Jwhile 𝑏 do 𝑆 odK = 𝐹 ∪ 𝐼 , with

𝐹 =

∞⋃
𝑘=0
{𝜎 | (𝜎, 𝑠, (while 𝑏 do 𝑆 od)𝑘 ) ↓}

= {𝜎 | (𝜆, 𝜎, 𝜏) ∈
∞⋃
𝑘=0
[(while 𝑏 do 𝑆 od)𝑘 )]}

and

𝐼 = {𝜎 | ∃𝑠 .∀𝑘.∃𝑡, 𝑡 ′, 𝑗 .(𝑠, 𝜎, 𝑆𝑘 , ∅) −→ (𝑡, 𝜎 ( 𝑗) ,✓, ∅)∧
∃𝑚,𝑛 > 0.(𝑡, 𝜎 ( 𝑗) , 𝑆𝑚, ∅) −→ (𝑡 ′, 𝜎 ( 𝑗+𝑛) ,✓, ∅)}

= {𝜎 | ∃𝜆.∀𝑘.∃𝑡, 𝑡 ′, 𝑗 .(𝜆, 𝜎, (𝑡, 𝑗)) ∈ [𝑆𝑘 ]∧
∃𝑚,𝑛 > 0.((𝑡, 𝑗), 𝜎, (𝑡 ′, 𝑗 + 𝑛)) ∈ [𝑆𝑚]}

= {𝜎 | ∃𝜆.∀𝑘.∃𝑡, 𝑡 ′, 𝑗 .(𝜆, 𝜎, (𝑡, 𝑗)) ∈ [𝑆𝑘 ]∧
∃𝑚 > 0.((𝑡, 𝑗), 𝜎, 𝜏) ∈ [𝑆𝑚] ∩ 𝑃}

= {𝜎 | ∃𝜆.∀𝑘.(𝜆, 𝜎, 𝜏) ∈ [𝑆𝑘 ] ◦ (
∞⋃

𝑚=1
[𝑆𝑚] ∩ 𝑃)}

= {𝜎 | (𝜆, 𝜎,★) ∈
∞⋂
𝑘=0
[𝑆𝑘 ] ◦ (

∞⋃
𝑚=1
[𝑆𝑚] ∩ 𝑃)}

where 𝑃 is the set of progressive runs. Observe that 𝐼 ∩𝐹 = ∅.
Then, Jwhile 𝑏 do 𝑆 odK = 𝐹 ∪ 𝐼 with

𝐹 ∪ 𝐼 = {𝜎 | (𝜆, 𝜎, 𝜏) ∈
∞⋃
𝑘=0
[(while 𝑏 do 𝑆 od)𝑘 )]}∪

{𝜎 | (𝜆, 𝜎,★) ∈
∞⋂
𝑘=0
[𝑆𝑘 ] ◦ (

∞⋃
𝑚=1
[𝑆𝑚] ∩ 𝑃)}

= {𝜎 | (𝜆, 𝜎, 𝜏) ∈ [while 𝑏 do 𝑆 od]}
□

Proof sketch for Lemma 3.2. First, observe that the message
buffer of a component changes according to its put and get
operation: in any state (𝜌, 𝜇, 𝑠, 𝑆), 𝜇 collects the assignments
resulting from previous puts and gets. Then, the transition
relation⇒ on configurations makes a put and a get opera-
tions to coincide with a transition on a port configuration.
Therefore, after each put or get on a port 𝑝 , if the resulting
configurationM(𝑝) of port 𝑝 is consistent and the compo-
nent is in a state (𝜌, 𝜇, 𝑠, 𝑆), we haveM(𝑝) (𝜌) = 𝜇 (𝑝). By
Lemma 3.1, and given that initially the configuration of each
port is consistent, we can conclude that the memory buffer 𝜇
coincides with the port store after every operation, including
after the synchronization. □
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