
1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

49

50

51

52

53

54

55

56

57

58

59

60

61

62

63

64

65

66

67

68

69

70

71

72

73

74

75

76

77

78

79

80

81

82

83

84

85

86

87

88

89

90

91

92

93

94

95

96

97

98

99

100

101

102

103

104

105

106

107

108

109

110

Reowolf: Executable, Compositional, Synchronous
Protocol Specifications

Christopher A. Esterhuyse, Benjamin Lion, Hans-Dieter A. Hiep, Farhad Arbab

Abstract
Low-level communication primitives such as BSD sockets
are not adequate for next-generation Internet applications.
Instead, we propose programmable connectors that declare
high-level, application-specific communication intent using
a compositional, formal protocol description language suit-
able for verification. This paper contributes the Protocol De-
scription Language (PDL), that has a formal compositional
semantics and is executable as witnessed by a distributed,
dynamically (re)configureable run-time interpreter.

Introduction
Currently, networks of computing systems operate by de
facto conventions. Applications make use of informally spec-
ified protocol stacks that are implemented within operating
systems to enable peer-to-peer inter-process communication.
This includes applications deployed on a single machine, in
local area networks, and on the global Internet. Realistic pro-
tocol stacks are large and complex, e.g. various application
layer protocols (e.g. BGP, DNS, HTTP, FTP) are on top of
transport layer protocols (e.g. SCTP, TCP, TLS, UDP) on top
of Internet protocols (e.g. IPv4, IPv6).
Virtually all Internet applications use a decades-old BSD

socket application programming interface (API). However,
application protocols implemented on top of sockets are of-
ten not transparent and lack rigorous standards. Network
middleware must resort to guess the high-level application
intent hidden by sockets [21]. Furthermore, high-level se-
curity properties (e.g. kill-switch absence) are obfuscated
by the tight coupling between an application’s state and its
socket communications. As a result, applications are difficult
and costly to analyze, impeding the availability of proto-
col implementations with desirable qualities. To avoid this
friction, application developers favor centralized application
architectures over decentralized architectures.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are not
made or distributed for profit or commercial advantage and that copies bear
this notice and the full citation on the first page. Copyrights for components
of this work owned by others than ACMmust be honored. Abstracting with
credit is permitted. To copy otherwise, or republish, to post on servers or to
redistribute to lists, requires prior specific permission and/or a fee. Request
permissions from permissions@acm.org.
Conference’17, July 2017, Washington, DC, USA
© 2022 Association for Computing Machinery.
ACM ISBN 978-x-xxxx-xxxx-x/YY/MM. . . $15.00
https://doi.org/10.1145/nnnnnnn.nnnnnnn

Presently, we introduce Reowolf connectors as an alterna-
tive to BSD sockets for realizing multi-party, synchronous
communication sessions between networked applications.
This model lets application programmers express intended
behavior at a higher level of abstraction, thereby abstracting
from complex low-level implementation details such as those
of distributed consensus algorithms. Reowolf connectors of-
fer an API that lets application programmers declaratively
specify their communication intent using the Protocol De-
scription Language (PDL), delegating the implementation
of protocols to the operating system and networking envi-
ronment. One of our design goals for PDL is to make the
formal verification of high-level security properties tractable.
Thus, PDL needs a compositional, formal meaning that can
be analyzed with mathematical rigor.
There is a working prototype of Reowolf connectors im-

plemented in Rust at the user-mode level, which includes a
run-time interpreter of PDL, available in a persistent Zenodo
repository [1]. The goal of this article is to present interest-
ing theoretical aspects of our work and to give a formal basis
for the aforementioned implementation. In particular, the
theoretical contributions of this article include:

1. We define the Protocol Description Language (PDL)
intended for formally and unambiguously specifying
the behavior of network protocols. The design of PDL
is heavily based on the Reo coordination language
[2, 3, 17, 19, 28] but differs at crucial points. (Section 1)

2. We give a formal but idealistic semantics, by assuming
the availability of oracles. We give semantics in two
ways: an operational semantics and a denotational se-
mantics. The operational semantics is the most natural
semantics of the language, and the denotational se-
mantics witnesses that our semantics is compositional.
We show the equivalence of these two. (Section 2)

3. Towards an implementation of a run-time interpreter
of PDL, we eliminate the need for oracles from the
semantics and instead give a realistic semantics for
a fragment of PDL that is suitable for incrementally
unfolding a protocol’s behavior. This semantics shows
that, for certain protocols, we can effectively generate
oracles on-the-fly. We show how this third semantics
relates to the first two. (Section 3)

We then introduce connectors as a replacement for sock-
ets for multi-party network programming and describe in
abstracto our prototype implementation in Section 4. The pro-
totype generates communication behavior from protocols,
specified just-in-time, by distributed applications connected

1

https://doi.org/10.1145/nnnnnnn.nnnnnnn

111

112

113

114

115

116

117

118

119

120

121

122

123

124

125

126

127

128

129

130

131

132

133

134

135

136

137

138

139

140

141

142

143

144

145

146

147

148

149

150

151

152

153

154

155

156

157

158

159

160

161

162

163

164

165

Conference’17, July 2017, Washington, DC, USA Christopher A. Esterhuyse, Benjamin Lion, Hans-Dieter A. Hiep, Farhad Arbab

166

167

168

169

170

171

172

173

174

175

176

177

178

179

180

181

182

183

184

185

186

187

188

189

190

191

192

193

194

195

196

197

198

199

200

201

202

203

204

205

206

207

208

209

210

211

212

213

214

215

216

217

218

219

220

by the Internet. The rest of the paper reflects on our contribu-
tions: Sections 5 and 6 evaluate the properties of connectors
and PDL by their own merits, and in comparison to related
work, respectively. Section 7 concludes with a summary.

1 Protocol Description Language
In this section, we give an account of a formal protocol and
introduce the syntax and semantics for the Protocol Descrip-
tion Language (PDL). The core idea is that formal protocols
can be defined in terms of components. In general, we dis-
tinguish two types of components: protocol components that
are specified in PDL, and native components which are given
a fixed interpretation. An example of a native component is
an IP component that offers connectivity over the Internet,
or a clock component that independently tracks time.
Components exchange data with each other via shared

ports. The ports through which a component can exchange
data define the interface of that component. For example,
the native IP component has an interface consisting of ports
through which IP packets are exchanged, and a clock com-
ponent has a port through which the current clock value is
exchanged. For the remainder, by protocol we mean a set of
(interacting) components, and we say that these components
are composed together to form the protocol.
We discuss a few core design principles of PDL. First, a

component is intentionally not aware of the other compo-
nents with which it composes into a protocol. That is, the
behavior of an individual component cannot depend on par-
ticular intentional properties of the other components with
which it is composed. When two components are composed,
only the behavior that both individual components share is
permissible: but neither component can inspect the other
component by means other than data exchanged through
their interface. Second, the coordination of data exchange
is explicit and exogenous to components. This leads us, for
each component, to be able to recognize a trace of observable
behavior, that is the data exchanged at ports over time. A
component can be analyzed and its properties verified on its
own, independently of its context.
The most natural way to give meaning to a composition

of components is to intersect their individual behavior: two
components form a new component which restricts the be-
havior of its underlying components to the largest common
subset, i.e., the intersection. Additionally, we express hiding
of a port on a component as a unary operator that removes
that port from the interface. The resulting component accepts
as behavior anything that the original component accepts,
but ignoring the data exchanged on the hidden port. The
conformance of an application to a protocol is equivalent to
asking if the intersection of the protocol component with
the native component that represents the behavior of the ap-
plication is non-empty. Of course, other semantic operations
may be of interest. In the following, we syntactically describe

protocol components expressed in PDL with intersection as
composition operation.

Syntax. Let𝑉 be a set of variables with typical element 𝑥 .
Let 𝑃 be a set of port variables with typical element 𝑝 . We
assume𝑉 and 𝑃 are disjoint. The abstract syntax for our pro-
tocol description language with two syntactical categories
for components (𝐶) and statements (𝑆) is defined:

𝐶 F 𝑆 | 𝐶 ∩𝐶 | ∃𝑝.𝐶
𝑆 F skip | 𝑥 B 𝑒 | 𝑥 ← 𝑝 | 𝑥 → 𝑝 | assert 𝑏 | sync
| if 𝑏 then 𝑆 else 𝑆 fi | while 𝑏 do 𝑆 od | 𝑆 ; 𝑆

where 𝑒 stands for an expression; 𝑏 represents the usual
Boolean expressions over variables in 𝑉 extended with the
novel firing operator ¿𝑝 for a port 𝑝 . The inverted question
mark symbol ¿ is used as a prefix unary operator, because
if ¿𝑝 is true it anticipates that the port fires. Intuitively, the
operations 𝑥 ← 𝑝 and 𝑥 → 𝑝 model a get and put operation
on port 𝑝 , respectively. While the state variables 𝑥 refer to
standard memory locations in a component state, a port
variable 𝑝 refers to a shared store between components. The
firing operator ¿𝑝 acts as a condition on the current value
at port 𝑏. The sync operation enforces all ports to have the
same value, which, if successful, acts as a reset operation
on the port’s value. The interface I(𝑐) of a component 𝑐
is the collection of all free port variables occurring in its
program. We refer to I𝑝 (𝑐) and I𝑔 (𝑐) for the set of ports on
which component 𝑐 puts (output ports) and gets (input ports),
respectively. An existential free component can be written
as the intersection of statements only, i.e.,𝐶 = 𝑆1∩ ...∩𝑆𝑛 for
𝑛 ∈ N. In that case, we call such component 𝐶 a composite
and all components 𝑆𝑖 for 1 ≤ 𝑖 ≤ 𝑛 its primitives.

Example. Consider the voting component 𝐴(𝑝𝐴, 𝑞𝐴, 𝑛, 𝑅):

while true do 𝑛 → 𝑝𝐴 ;
if ¿𝑞𝐴 then 𝑥 ← 𝑞𝐴 else skip fi ;
if 𝑗 = 𝑅 then 𝑗 := 0 ; 𝑛 := 1 − 𝑛 else 𝑗 := 𝑗 + 1 fi ;

sync od

with 𝑛 ∈ {1, 0} and 𝑥 initialized to 0. Component 𝐴 selects a
vote 𝑛, and keeps on voting the same value 𝑁 times, and then
flips its vote. Individually, component 𝐴 exhibits streams of
bits at port 𝑝𝐴, that consist of a sequence of 𝑅 repetitions of
𝑛, followed by 𝑅 repetitions of 1 − 𝑛, etc.

Consider the following comparison component𝑈 (𝑖1, 𝑖2, 𝑜):

while true do
if ¿𝑖1 ∧ ¿𝑖2 then 𝑥1 ← 𝑖1 ; 𝑥2 ← 𝑖2 ;

if 𝑥1 = 𝑥2 then 𝑥1 → 𝑜 else skip fi
else if ¿𝑖1 ∧ ¬¿𝑖2 then 𝑥1 ← 𝑖1 ; 𝑥1 → 𝑜 else skip fi

if ¿𝑖2 ∧ ¬¿𝑖1 then 𝑥2 ← 𝑖2 ; 𝑥2 → 𝑜 else skip fi
fi ; sync od

2

221

222

223

224

225

226

227

228

229

230

231

232

233

234

235

236

237

238

239

240

241

242

243

244

245

246

247

248

249

250

251

252

253

254

255

256

257

258

259

260

261

262

263

264

265

266

267

268

269

270

271

272

273

274

275

Reowolf: Executable, Compositional, Synchronous Protocol Specifications Conference’17, July 2017, Washington, DC, USA

276

277

278

279

280

281

282

283

284

285

286

287

288

289

290

291

292

293

294

295

296

297

298

299

300

301

302

303

304

305

306

307

308

309

310

311

312

313

314

315

316

317

318

319

320

321

322

323

324

325

326

327

328

329

330

𝑅𝑒𝑝 (𝑝, 𝑞, 𝑟) = while true do
if ¿𝑝 then 𝑥 ← 𝑝; 𝑥 → 𝑞; 𝑥 → 𝑟

else assert ¬¿𝑞 ∧ ¬¿𝑟 fi; sync
od

𝑆𝑎𝑚𝑒 (𝑝, 𝑞, 𝑟) = while true do
if ¿𝑝 then
𝑥 ← 𝑝; 𝑦 ← 𝑞; assert 𝑝 = 𝑞; 𝑥 → 𝑟

else assert ¬¿𝑞 ∧ ¬¿𝑟 fi; sync
od

Figure 1. Definition of protocols 𝑅𝑒𝑝 and 𝑆𝑎𝑚𝑒 , parametric
over ports 𝑝 , 𝑞, and 𝑟 .

Component𝑈 compares the values at its ports 𝑖1 and 𝑖2, and
outputs on 𝑜 the value of both ports if they fired with the
same value, or if only one port fires, of that firing port. We
consider the expression 𝑀 (𝑝𝐴1 , 𝑜1, ..., 𝑝𝐴𝑘

, 𝑜𝑘 , 𝑜), for 𝑘 > 1,
defined as:

𝑈 (𝑝𝐴𝑘
, 𝑜𝑘 , 𝑜) ∩𝑈 (𝑝𝐴1 , 𝑝𝐴2 , 𝑜1) ∩

⋂
1≤𝑖≤𝑘−1

𝑈 (𝑝𝐴𝑖
, 𝑜𝑖 , 𝑜𝑖+1)

𝑀 is the composite of a series of𝑈 components, each casting
the result of its comparison to a next comparison unit. As
a result, if it fires, port 𝑜 contains the outcome of the ma-
jority of the votes among voters 𝐴1, ..., 𝐴𝑘 . Finally, we write
composition of voters with the voting protocol as:

𝑀 (𝑝𝐴1 , 𝑜1, ..., 𝑝𝐴𝑘
, 𝑜𝑘 , 𝑜) ∩

⋂
1≤𝑖≤𝑘

𝐴𝑖 (𝑝𝐴𝑖
, 𝑜, 𝑏𝑖 , 𝑅𝑖)

where 𝑏𝑖 ∈ {0, 1} is the vote of component 𝐴𝑖 , and 𝑅𝑖 is its
repetition.
We make several observations. The protocol is not cen-

tralized, and is defined in terms of several comparison units.
The voters do not have access to votes of other voters, but
can speculate on the result of the vote before voting. Each
unit may just compare the votes, without necessarily access-
ing the value of the vote. One may therefore employ some
encryption and decryption protocols to make the voting
protocol completely private.

2 Idealistic Semantics
Consider the voting protocol detailed in Section 1 instanti-
ated for three voters: Alice, Bob, and Dan. Three rounds of
votes of each voters are recorded in Table 1. Note that, indi-
vidually, each pair of ports reflects the behavior of a voter,
i.e., its vote and the result. A cell in Table 1 consists of the
value of a port in a round, e.g., port 𝑝𝐴 at round 1 has value
0, and port 𝑝𝐶 at round 2 has value 1. The property of syn-
chrony imposed by the majority protocol induces a relation
among the cells in Table 1. In every round, the output of the

1
2
3
...

𝑝𝐴 𝑞𝐴
0 0
1 1
1 1
...

𝑝𝐵 𝑞𝐵
1 0
1 1
0 1
...

𝑝𝐶 𝑞𝐶
0 0
1 1
1 1
...

Table 1. Three round of votes and results for Alice, Bob,
and Dan, respectively with interface (𝑝𝐴, 𝑞𝐴), (𝑝𝐵, 𝑞𝐵), and
(𝑝𝐶 , 𝑞𝐶).

(𝜎, 𝑠, skip) −→ (𝜎, 𝑠,✓)
(𝜎, 𝑠, 𝑥 B 𝑒) −→ (𝜎, 𝑠 [𝑥 B J𝑒K(𝑠)],✓)

If 𝜎 (0) (𝑝) ≠ ★ :
(𝜎, 𝑠, 𝑥 ← 𝑝) −→ (𝜎, 𝑠 [𝑥 B 𝜎 (0) (𝑝)],✓)

If 𝜎 (0) (𝑝) = 𝑠 (𝑥) :
(𝜎, 𝑠, 𝑝 ← 𝑥) −→ (𝜎, 𝑠,✓)

If J𝑏K(𝜎 (0), 𝑠) = true :
(𝜎, 𝑠, assert 𝑏) −→ (𝜎, 𝑠,✓)

(𝜎, 𝑠, sync) ✓−→ (𝜎 ′, 𝑠,✓)
If J𝑏K(𝜎 (0), 𝑠) = true :
(𝜎, 𝑠, if 𝑏 then 𝑆1 else 𝑆2 fi) −→ (𝜎, 𝑠, 𝑆1)

If J𝑏K(𝜎 (0), 𝑠) = false :
(𝜎, 𝑠, if 𝑏 then 𝑆1 else 𝑆2 fi) −→ (𝜎, 𝑠, 𝑆2)

If J𝑏K(𝜎 (0), 𝑠) = true :
(𝜎, 𝑠,while 𝑏 do 𝑆 od) −→ (𝜎, 𝑠, 𝑆 ; while 𝑏 do 𝑆 od)

If J𝑏K(𝜎 (0), 𝑠) = false :
(𝜎, 𝑠,while 𝑏 do 𝑆 od) −→ (𝜎, 𝑠,✓)

Figure 2. Operational semantics for PDL.

vote is the value given by the majority vote, i.e., the port
𝑞𝐴, 𝑞𝐵 , and 𝑞𝐶 always output the same value, which is the
majority of the votes at 𝑝𝐴, 𝑝𝐵 , and 𝑝𝐶 . We offer a semantics
for which each component denotes a set of such tables, and
where a composite component restricts which of individual
tables are allowed.

Operational semantics. Consider a value domainD. By
O(D) we denote the value domain extended by a special
element★ that represents the absence of a value. Let Σ denote
𝑉 → D, and Δ denote N→ 𝑃 → O(D). Here, Σ is the set
of all (internal) states with typical element 𝑠 , and Δ the set
of all (observable) streams with typical element 𝜎 . We define
𝑠 [𝑥 B 𝑣] as the usual state update for state 𝑠 , variable 𝑥 and
value 𝑣 ∈ D. We define𝜎 ′ as the tail of𝜎 , i.e.,𝜎 ′(𝑥) = 𝜎 (𝑥+1)
for all 𝑥 ∈ N. Further, we assume that J𝑒K : Σ → D is
defined for every expression 𝑒 , and that J𝑏K : (𝑃 → O(D))×
Σ → {true, false} is defined compositionally for Boolean

3

331

332

333

334

335

336

337

338

339

340

341

342

343

344

345

346

347

348

349

350

351

352

353

354

355

356

357

358

359

360

361

362

363

364

365

366

367

368

369

370

371

372

373

374

375

376

377

378

379

380

381

382

383

384

385

Conference’17, July 2017, Washington, DC, USA Christopher A. Esterhuyse, Benjamin Lion, Hans-Dieter A. Hiep, Farhad Arbab

386

387

388

389

390

391

392

393

394

395

396

397

398

399

400

401

402

403

404

405

406

407

408

409

410

411

412

413

414

415

416

417

418

419

420

421

422

423

424

425

426

427

428

429

430

431

432

433

434

435

436

437

438

439

440

expressions 𝑏, where we have J¿𝑝K(𝑎, 𝑠) = true if 𝑎(𝑝) ≠ ★,
and J¿𝑝K(𝑎, 𝑠) = false if 𝑎(𝑝) = ★.
We show in Figure 2 a small-step operational semantics

for statements. We consider an inductively defined labeled
relation between the triples of the form (𝜎, 𝑠, 𝑆) where, in
the place of 𝑆 we may have a check mark ✓ to indicate
termination, and the label on the relation is either a check
mark ✓ or empty.

Further, the small-step relation is closed under the follow-
ing rule:

(𝜎1, 𝑠1, 𝑆1)
𝑋−→ (𝜎2, 𝑠2, 𝑆 ′1)

(𝜎1, 𝑠1, 𝑆1 ; 𝑆2)
𝑋−→ (𝜎2, 𝑠2, 𝑆 ′1 ; 𝑆2)

where we identify ✓ ; 𝑆2 and 𝑆2.
We now consider (finite or infinite) chains of triples where

each pair of the successive elements is related by the above
relation. We write (𝜎, 𝑠, 𝑆) ↓ if there exists a chain with
(𝜎, 𝑠, 𝑆) as its first triple and either (1) the chain is finite and
its last triple has a check mark in the third place, or (2) it has
infinitely many triples with a check mark in the third place.
Intuitively, such a finite chain represents a terminating run,
and such an infinite chain represents a run that performs
sync infinitely often.
A component denotes a set of streams, i.e. J𝐶K ⊆ Δ. Let

𝜎 ↓ 𝑞 be the oracle such that for all 𝑖 ∈ N, (𝜎 ↓ 𝑞) (𝑖) (𝑝) = ★

if 𝑝 = 𝑞 and equals 𝜎 (𝑖) (𝑝) otherwise. Let 𝜄 ∈ Σ denote some
fixed initial but unspecified state. We define the semantics
as follows:

J𝐶1 ∩𝐶2K = J𝐶1K ∩ J𝐶2K
J∃𝑝.𝐶K = {𝜏 ∈ Δ | ∃𝜎 ∈ J𝐶K.(𝜏 ↓ 𝑞) = (𝜎 ↓ 𝑞)}

J𝑆K = {𝜎 | (𝜎, 𝜄, 𝑆) ↓}

Consider the following two statements:

Ω = while true do skip od
𝜔 = while true do sync od

Although both Ω and 𝜔 represent infinitely running pro-
grams, their denotations are different. Namely, JΩK = ∅,
since there does not exist a terminating run (true is never
false in any state, thus the loop never exits) nor does it per-
form sync infinitely often. However, J𝜔K = Δ, i.e., any stream
is acceptable: we always have a chain wherein sync occurs
infinitely often.
Further, consider the replicator protocol depicted in Fig-

ure 1. Its denotational semantics is as follows:

J𝑅𝑒𝑝 (𝑝, 𝑞, 𝑟)K = {𝜎 | ∀𝑘. 𝜎 (𝑘) (𝑝) = 𝜎 (𝑘) (𝑞) = 𝜎 (𝑘) (𝑟)}

that is, at any time 𝑘 either the value observed at 𝑝 is the
same as those at 𝑞 and 𝑟 , or there is no value observed at any
of the ports 𝑝 , 𝑞, and 𝑟 .

[skip] = {(𝜆, 𝜎, 𝜆) | 𝜎 ∈ Δ}
[𝑥 B 𝑒] = {((𝑠, 𝑖), 𝜎, (𝑠 [𝑥 B J𝑒K(𝑠)], 𝑖)) | 𝜎 ∈ Δ}
[𝑥 ← 𝑝] = {((𝑠, 𝑖), 𝜎, (𝑠 [𝑥 B 𝜎 (𝑖) (𝑝)], 𝑖)) | 𝜎 (𝑖) (𝑝) ≠ ★}
[𝑥 → 𝑝] = {((𝑠, 𝑖), 𝜎, (𝑠, 𝑖)) | 𝜎 (𝑖) (𝑝) = 𝑠 (𝑥)}
[assert 𝑏] = {((𝑠, 𝑖), 𝜎, (𝑠, 𝑖)) | J𝑏K(𝜎 (𝑖), 𝑠) = true}
[sync] = {((𝑠, 𝑖), 𝜎, (𝑠, 𝑖 + 1)) | 𝜎 ∈ Δ}
[𝑆1 ; 𝑆2] = [𝑆1] ◦ [𝑆2] ∪ {(𝜆, 𝜎,★) | (𝜆, 𝜎,★) ∈ [𝑆1]}
[if 𝑏 then 𝑆1 else 𝑆2 fi] = [assert 𝑏 ; 𝑆1] ∪ [assert ¬𝑏 ; 𝑆2]

[while 𝑏 do 𝑆 od]=
∞⋃
𝑘=0
[(while 𝑏 do 𝑆 od)𝑘]∪

∞⋂
𝑘=0

prog(𝑆, 𝑘)

where
[𝑆1] ◦ [𝑆2] = {(𝜆, 𝜎, 𝜏) | (𝜆, 𝜎, 𝜅) ∈ [𝑆1], (𝜅, 𝜎, 𝜏) ∈ [𝑆2]}
(while 𝑏 do 𝑆 od)0 = while true do skip od

(while 𝑏 do 𝑆 od)𝑘+1 = if 𝑏 then 𝑆 ; (while 𝑏 do 𝑆 od)𝑘

else skip fi

given 𝑃 = {((𝑠, 𝑖), 𝜎, (𝑡, 𝑖)) | 𝑖 ∈ N}𝐶 ,

prog(𝑆, 𝑘) = ([𝑆𝑘] ◦
∞⋃

𝑚=1
([𝑆𝑚] ∩ 𝑃))†

and 𝑋† = {(𝜆, 𝜎,★) | (𝜆, 𝜎, 𝜏) ∈ 𝑋 } and
𝑆0 = skip

𝑆𝑘+1 = assert 𝑏 ; 𝑆 ; 𝑆𝑘

Figure 3. Denotational semantics for PDL.

Denotational semantics. We call 𝐶 ⊆ (N → O(Σ)) ×
Δ × (N→ O(Σ)) a component, where (𝜆, 𝜎, 𝜏) ∈ 𝐶 consists
of the stream of initial states 𝜆, the observable behavior
𝜎 , and the stream of final states 𝜏 . For simplicity, we first
consider a subspace of components, namely those that have
a single initial state, and an optional final state. We write
(𝑠, 𝑖) for a stream 𝜆 ∈ N→ O(Σ) when 𝜆(𝑗) = 𝑠 if 𝑗 = 𝑖 , and
★ otherwise. We reuse the symbol ★ to denote the stream
consisting of ★ only.

We interpret statements compositionally by defining [𝑆] ⊆
(N → O(Σ)) × Δ × (N → O(Σ)). We show the equality
J𝑆K = {𝜎 ∈ Δ | ((𝑠, 0), 𝜎, 𝜏) ∈ [𝑆]}. In the following, when
unspecified, 𝑠 is a state that ranges over Σ and 𝑖 is an index
that ranges over N. We define [𝑆] on the structure of the
statement 𝑆 in Figure 3.

Intuitively, the component
⋃∞

𝑘=0 [(while 𝑏 do 𝑆 od)𝑘] con-
tains all streams in the denotation of the 𝑘-unfolding of the
while statement for some 𝑘 . Alternatively, the component⋂∞

𝑘=0 prog(𝑆, 𝑘) contains all streams in the denotation of 𝑆𝑘
for all 𝑘 . The first component represents either runs that
terminate and for which there is a witness for 𝑘 , or runs that

4

441

442

443

444

445

446

447

448

449

450

451

452

453

454

455

456

457

458

459

460

461

462

463

464

465

466

467

468

469

470

471

472

473

474

475

476

477

478

479

480

481

482

483

484

485

486

487

488

489

490

491

492

493

494

495

Reowolf: Executable, Compositional, Synchronous Protocol Specifications Conference’17, July 2017, Washington, DC, USA

496

497

498

499

500

501

502

503

504

505

506

507

508

509

510

511

512

513

514

515

516

517

518

519

520

521

522

523

524

525

526

527

528

529

530

531

532

533

534

535

536

537

538

539

540

541

542

543

544

545

546

547

548

549

550

enter finitely many times the loop but are non terminating
in 𝑆 . The second component includes runs that enter the loop
infinitely many times, but always eventually synchronize.

We show, in Theorem 2.1, that the denotational semantics
coincide with the operational semantics.

Theorem 2.1. For all statements 𝑆 in PDL:

J𝑆K = {𝜎 ∈ Δ | ((𝑠, 0), 𝜎, 𝜏) ∈ [𝑆]}

Proof. See appendix. □

Reo. The semantics of PDL is faithful to the semantics of
Reo [4, 29]. A component in PDL denotes a set of sequences of
port-value assignments, which is analog to a Reo connector
that denotes a set of time data stream tuples over its ports,
with integer time. As well as in Reo, constraints over port
assignments are transitive: if 𝐴 always fires with 𝐵 and 𝐵

always fires with𝐶 , then𝐴 always fires with𝐶 . The idealistic
semantics of PDL introduced in this section shares the same
declarative paradigm with Reo: the emphasize is on what
behaviors are specified by the set of interacting components,
and not on how such behavior is constructed. PDL, however,
differs with Reo in that its sequential nature opens a more
imperative understanding of protocols. We give, in the next
section, an alternative semantics, called realistic semantics,
that defines the operational generation of some oracles.

3 Realistic Semantics
Section 1 gives to PDL a semantics as components. A pro-
gram written in PDL has as meaning a set of streams of
port-value assignments. As shown earlier, the semantics is
compositional, which is of interest for reasoning about a com-
posite program in terms of its parts. The results of Section 1
come, however, at a price: the operational intentionality of
the language is lost. For instance, in the time data streams
formalism, the statements 𝑥 ← 𝑝 and 𝑥 → 𝑝 are semanti-
cally equivalent, because they both represent the exchange
of a value 𝑥 through a port 𝑝 . On the other hand, their oper-
ational intentions differ: 𝑥 ← 𝑝 denotes production of the
value of 𝑥 through 𝑝 , and 𝑥 → 𝑝 denotes consumption of a
value designated as 𝑥 through 𝑝 . In this section, we provide
a realistic semantics, that closely describes how an imple-
mentation may construct some oracle given by the idealistic
semantics in Section 1. As expected, there exist oracles in the
ideal semantics that cannot be constructed, and some finite
runs in the realistic semantics cannot appear in any idealistic
semantics. For instance, below, we give a composition that is
not causal as an example of the former, and a run generated
with a one step look-ahead as an example of the latter.

Causality. Intuitively, causality prohibits cyclic depen-
dencies between send and receive operations at a port in a

round. Consider the following two component descriptions:

𝐶1 = while true do 𝑥 ← 𝑝;𝑥 → 𝑞 ; sync od
𝐶2 = while true do 𝑦 ← 𝑞;𝑦 → 𝑝 ; sync od

Denotationally, the two components have the same set of
streams, and J𝐶1 ∩ 𝐶2K = J𝐶1K ∩ J𝐶2K = J𝐶1K = J𝐶2K. Op-
erationally, in each iteration, 𝐶1 commits to exchange the
value that it consumes from 𝑝 through 𝑞, whereas in each
of its iterations, 𝐶2 commits to exchange the value that it
consumes from 𝑞 through 𝑝 . The cause of the fulfillment
of the commitment by 𝐶1 in each round, thus, must be the
availability of a data item on 𝑝 , whereas the cause of the
fulfillment of the commitment by 𝐶2 in each round must be
the availability of a data item on 𝑞. In spite of the fact that
J𝐶1 ∩𝐶2K = J𝐶1K = J𝐶2K, at run-time the concurrent execu-
tion of 𝐶1 and 𝐶2 deadlocks in a causality loop, because the
success of the commitment by each component depends on
the success of the commitment by the other. For 𝑖 ∈ {1, 2},
the cause of the success of each exchange by 𝐶𝑖 depends
on the success of an exchange by 𝐶3−𝑖 . However, neither 𝐶𝑖

actually produces any data for any exchange to succeed. We
refer to such cyclic dependencies as violation of causality.

Look-ahead. The ideal semantics in Section 1 defines the
behavior of a component as a set of oracles. We call a (finite)
run a (finite) sequence of port assignments, and call a step
one element of a run. Intuitively, a one step look-ahead is
an extension of the ideal semantics to accept finite runs that
can be constructed up to reaching the next sync statement.
Consider the following two component descriptions:

𝐶1 = 0← 𝑝 ; sync ; 1← 𝑝 ; sync ; 𝜔
𝐶2 = 0→ 𝑝 ; sync ; 2→ 𝑝 ; sync ; 𝜔

where we use 𝑛 ← 𝑝 as shorthand notation for 𝑥 ← 𝑝 ;
assert 𝑥 = 𝑛 with 𝑛 ∈ {0, 1}.
The component J𝐶1 ∩𝐶2K has empty behavior since the

applications will diverge in the second round. Operationally,
however, there is a run of size one in which 𝑝 has value 0 in
the first step. The run cannot be extended further, since 𝑝
cannot be assigned any value in the next round. Therefore,
the finite run ⟨{𝑝 ↦→ 0}⟩ consisting of only the single step
{𝑝 ↦→ 0} is a valid behavior only in what we refer to as a one
step look-ahead semantics.
Observe that the ideal semantics has an infinite look-

ahead, and can detect any further inconsistencies. Generally,
however, no finite sequence of operations can implement
infinite look-ahead. A finite 𝑘-step look-ahead semantics
is a superset of the ideal semantics that also contains the
𝑘-length prefix of each of its runs. In principle, every finite
𝑘-step look-ahead semantics is implementable. Clearly, the
ideal semantics rejects every 𝑘-length prefix that it does not
contain. A 𝑘-step look-ahead semantics over-approximates
the ideal semantics by admitting such junk runs. Observe
that the smaller the 𝑘 value, the more junk runs that a 𝑘-step

5

551

552

553

554

555

556

557

558

559

560

561

562

563

564

565

566

567

568

569

570

571

572

573

574

575

576

577

578

579

580

581

582

583

584

585

586

587

588

589

590

591

592

593

594

595

596

597

598

599

600

601

602

603

604

605

Conference’17, July 2017, Washington, DC, USA Christopher A. Esterhuyse, Benjamin Lion, Hans-Dieter A. Hiep, Farhad Arbab

606

607

608

609

610

611

612

613

614

615

616

617

618

619

620

621

622

623

624

625

626

627

628

629

630

631

632

633

634

635

636

637

638

639

640

641

642

643

644

645

646

647

648

649

650

651

652

653

654

655

656

657

658

659

660

look-ahead semantics contains. On the other hand, larger
𝑘 values necessarily require more look-ahead to ascertain
the validity of a run, which lead to less efficient implemen-
tations. Below, we introduce an operational semantics that
avoids causality loops and abides by the one-step look-ahead
constraint explained above.

Operational semantics. We consider a component 𝐶 as
the product of 𝑛 PDL components, i.e., an expression of form:

𝐶 = 𝑆1 ∩ ... ∩ 𝑆𝑛
where 𝑐 ∈ 𝐶 denotes a primitive component 𝑆𝑖 for some
1 ≤ 𝑖 ≤ 𝑛.

We take inspiration from [15, 17, 33, 37, 38], and more
generally the literature on solving Constraint Satisfaction
Problems (CSP). We distinguish the satisfaction problems of
(1) finding which port fires at which round, and (2) finding
which value to assign to each firing port.

We introduce some notation. A firing map is a partial
function from ports to Boolean and we use 𝜌 : 𝑃 ⇀ {⊤,⊥}
as a typical element and ∅ as the firing map with empty
domain. We use dom(𝜌) to denote the set of ports 𝑝 ∈ 𝑃

on which 𝜌 is defined. We say that 𝑝 fires in 𝜌 if 𝜌 (𝑝) =
⊤, and does not fire otherwise. An assignment is a partial
function from ports to values and we use 𝜇 : 𝑃 ⇀ 𝑉 as a
typical assignment. Observe that a step is a total assignment.
Similarly to Section 1, we use 𝑠 to range over component
memory store, and 𝑆 to range over the syntactic category of
PDL statements.
A component state is a quadruple (𝜌, 𝜇, 𝑠, 𝑆) of a firing

map 𝜌 , an assignment 𝜇, a map from state variables to values
𝑠 , and a program statement 𝑆 . We use 𝑝!𝑑 and 𝑝?𝑑 to denote
the act of putting and the getting of value 𝑑 ∈ D at port 𝑝 ,
respectively. The small step operational semantics consists
of the closure of the rules defined in Figure 4, under the
following rule:

(𝜌, 𝜇, 𝑠, 𝑆1)
𝑋→ (𝜌 ′, 𝜇, 𝑠 ′, 𝑆 ′1)

(𝜌, 𝑠, 𝑆1 ; 𝑆2)
𝑋→ (𝜌 ′, 𝜇, 𝑠 ′, 𝑆 ′1 ; 𝑆2)

where we identify ✓ ; 𝑆2 with 𝑆2.
Observe that the small step operational semantics is non-

deterministic: in a state (𝜌, 𝜇, 𝑠, 𝑆), (1) multiple extensions
of 𝜌 ′ may exist, and/or (2) multiple values in the value do-
main of a port may satisfy the port-value constraints that
determine a state.
Below, we introduce a deterministic relation ↠ on the

set of states of a component that models the concurrent
execution of the component. In our context, the relation↠
is deterministic because it is functional on a set of states and
a label. For a primitive component 𝑐 ∈ 𝐶 , a set of states Σ of
𝑐 , and a state (𝜌, 𝜇, 𝑠, 𝑆) ∈ Σ, we define the relation:

(𝜌, 𝜇, 𝑠, 𝑆) 𝑋→ (𝜌 ′, 𝜇 ′, 𝑠 ′, 𝑆 ′), 𝑋 ≠ ✓

Σ
𝑋
↠ Σ ∪ {(𝜌 ′, 𝜇 ′, 𝑠 ′, 𝑆 ′)}

(𝜌, 𝜇, 𝑠, skip) −→ (𝜌, 𝜇, 𝑠,✓)
(𝜌, 𝜇, 𝑠, 𝑥 B 𝑒) −→ (𝜌, 𝜇, 𝑠 [𝑥 B J𝑒K(𝑠)],✓)

(𝜌, 𝜇, 𝑠, sync) ✓−→ (∅, ∅, 𝑠,✓)
If 𝜌 (𝑝) is true, 𝑑 ∈ D and 𝑝 ∉ dom(𝜇) or 𝜇 (𝑝) = 𝑑 :

(𝜌, 𝜇, 𝑠, 𝑥 ← 𝑝)
(𝜌,𝑝?𝑑)
−→ (𝜌, 𝜇 [𝑝 := 𝑑], 𝑠 [𝑥 B 𝑑],✓)

If 𝜌 (𝑝) is true, 𝑝 ∉ dom(𝜇) or 𝜇 (𝑝) = 𝑠 (𝑥) :

(𝜌, 𝜇, 𝑠, 𝑥 → 𝑝)
(𝜌,𝑝!𝑠 (𝑥))
−→ (𝜌, 𝜇 [𝑝 := 𝑠 (𝑥)], 𝑠,✓)

If J𝑏K(𝜌, 𝑠) = true :
(𝜌, 𝜇, 𝑠, assert 𝑏) −→ (𝜌, 𝜇, 𝑠,✓)

(𝜌, 𝜇, 𝑠, if 𝑏 then 𝑆1 else 𝑆2 fi) −→ (𝜌, 𝜇, 𝑠, 𝑆1)
(𝜌, 𝜇, 𝑠,while 𝑏 do 𝑆 od) −→(𝜌, 𝜇, 𝑠, 𝑆 ; while 𝑏 do 𝑆 od)
If J𝑏K(𝜌, 𝑠) = false :
(𝜌, 𝜇, 𝑠, if 𝑏 then 𝑆1 else 𝑆2 fi) −→ (𝜌, 𝜇, 𝑠, 𝑆2)

(𝜌, 𝜇, 𝑠,while 𝑏 do 𝑆 od) −→ (𝜌, 𝜇, 𝑠,✓)
If 𝜌 ⊆ 𝜌 ′ :

(𝜌, 𝜇, 𝑠, 𝑆) −→ (𝜌 ′, 𝜇, 𝑠, 𝑆)

Figure 4. Small-step real operational semantics for PDL.

(𝜌, 𝜇, 𝑠, 𝑆) ✓→ (∅, ∅, 𝑠 ′, 𝑆 ′),
I(𝑐) ⊆ dom(𝜌),∀𝑝 ∈ I(𝑐). 𝜌 (𝑝) =⇒ 𝑝 ∈ dom(𝜇)

Σ
(𝜌,✓)
↠ {(∅, ∅, 𝑠 ′, 𝑆 ′)}

where I(𝑐) ⊆ 𝑃 is the interface of component 𝑐 . Note that
the domain of the firing map 𝜌 labeling a transition for a
sync statement covers all ports in I(𝑐). Observe, as well,
that the firing map in the state of a component may refer to
the firing of some ports outside of its interface.

Implicitly, the rule for the sync statement in the definition
of↠ imposes the following characteristics on components
sharing ports. First, if a component puts or gets from a port
shared by other components, then other components must
also perform compatible put or get operations. The behavior
models a all-or-nothing transaction mode. Second, all puts
and all gets on the same port have the same value. We leave
as future work the change of granularity in the semantics to
define alternative behavior in sharing of port variables. 1

Observe that↠ models the parallel progression of a com-
ponent, where each state in Σ corresponds to a speculative

1Nodes in Reo closely resemble shared ports in PDL. A node is an 𝑛 to𝑚
relation that acts as a merger on its 𝑛 putters, and as a replicator on its𝑚
getters. A PDL port acts as a consensus on its putters, and as a replicator on
its getters. As with the constraint automata semantics of Reo [5], we can
model a Reo node as a composition of an explicit𝑛-input merger component
whose only output port is in a 1-to-1 relation with a 1-to-𝑚 PDL port.

6

661

662

663

664

665

666

667

668

669

670

671

672

673

674

675

676

677

678

679

680

681

682

683

684

685

686

687

688

689

690

691

692

693

694

695

696

697

698

699

700

701

702

703

704

705

706

707

708

709

710

711

712

713

714

715

Reowolf: Executable, Compositional, Synchronous Protocol Specifications Conference’17, July 2017, Washington, DC, USA

716

717

718

719

720

721

722

723

724

725

726

727

728

729

730

731

732

733

734

735

736

737

738

739

740

741

742

743

744

745

746

747

748

749

750

751

752

753

754

755

756

757

758

759

760

761

762

763

764

765

766

767

768

769

770

branch of the component. Note, however, that we still allow
components to progress and receive arbitrary values at ports.

We define, in addition, a labeled transition relation→ on
a set Λ of pairs of a firing map and a data value, such that:

• Λ
(𝜌,𝑑)
−−−−→ Λ∪ {(𝜌, 𝑑)} if, for all (𝜌 ′, 𝑑 ′) ∈ Λ, there exists

𝑝 ∈ dom(𝜌) ∩ dom(𝜌 ′) such that 𝜌 (𝑝) ≠ 𝜌 ′(𝑝); and
• {(𝜌,𝑑)} ⊎ Λ

(𝜌′,𝑑)
−−−−→ {(𝜌 ′, 𝑑)} ⊎ Λ if 𝜌 ⊆ 𝜌 ′.

We say that Λ is consistent if, given a total firing map 𝜌 , there
exists at most one pair (𝜌 ′, 𝑑) ∈ Λ such that 𝜌 ′ ⊆ 𝜌 . Then, if
Λ is consistent, we write Λ(𝜌) ∈ O(D) to denote the value
𝑑 if there exists (𝜌 ′, 𝑑) ∈ Λ with 𝜌 ′ ⊆ 𝜌 , and to denote the
value ★ otherwise.

Lemma 3.1. For all (𝜌, 𝑑), if Λ
(𝜌,𝑑)
−−−−→ Λ′ and Λ is consistent,

then Λ′ is consistent.

We now define, on a list of components, the constraints
of valid causality and one step look ahead. We useM to
range over configuration whereM(𝑐) ⊆ Σ returns a set of
states for a primitive component 𝑐 , andM(𝑝) returns a set
of pairs of a firing map 𝜌 and a port value 𝑑 ∈ D for a port
𝑝 ∈ 𝑃 . Let 𝑐 ∈ 𝐶 and assume that unless stated otherwise,
M ′(𝑥) =M(𝑥) for all 𝑥 . We define a configuration relation
satisfying the following four rules.

A component may freely do an internal transition (rule 1):
M(𝑐) ↠M ′(𝑐)
M ⇒M ′ (1)

A component may put a value on a port (rule 2) if its firing
map updates the current port configuration:

M(𝑐)
(𝜌,𝑝!𝑑)
↠ M ′(𝑐), M(𝑝)

(𝜌,𝑑)
−−−−→M ′(𝑝)

M ⇒M ′ (2)

Rule 2 allows a component to put on a port if and only if
the port has a corresponding valid transition. Note that if
there is no valid transition for the port, then the component
cannot put its value and blocks. The last operational rule
in Figure 4 enables speculation on an arbitrary port for a
component. It is, therefore, entirely possible for a component
to keep speculating (adding firing information in its firing
map) until a put operation succeeds.
A component may get a value (rule 3) that is currently

stored in the port configuration only if its firing map occurs
in the configuration of the port:

M(𝑐)
(𝜌,𝑝?𝑑)
↠ M ′(𝑐), (𝜌, 𝑑) ∈ M(𝑝)
M ⇒M ′ (3)

Observe that rule 3 equates the firing map on the transition
of the component 𝑐 with the firing map in the store of port
𝑝 . Similarly as for rule 2, a component may speculate on the
firing of a port that is not in its interface with the last rule
of Figure 4. Practically, as detailed in Section 4, an exchange
of information occurs between the port and a component, to
construct the smallest extension of a valid firing map.

Finally, a component may synchronize (rule 4) if and only
if all other involved components synchronize with the same
firing map. As a result, the port configuration is reset to the
empty set and the global assignment is exposed as the label
of the transition:

∃𝜌.
∀𝑐 ∈ 𝐶.M(𝑐)

(𝜌,✓)
↠ M ′(𝑐)

∀𝑝 ∈ 𝑃 .M ′(𝑝) = ∅ ∧ ¬𝜌 (𝑝) ⇐⇒ 𝑣 (𝑝) = ★∧
𝑣 (𝑝) =M(𝑝) (𝜌)

M 𝑣⇒M ′
(4)

Observe that the assignment 𝑣 is well defined sinceM(𝑝) is
consistent for every 𝑝 ∈ 𝑃 .

Lemma 3.2. Let 𝐶 be a composite component andM a con-
figuration. Then, M 𝑣⇒ M ′ with total firing map 𝜌 as a
witness of the synchronization if and only if for all 𝑐 ∈ 𝐶 there

exists (𝜌, 𝜇𝑐 , 𝑠𝑐 , 𝑆𝑐) ∈ M(𝑐) such that (𝜌, 𝜇𝑐 , 𝑠𝑐 , 𝑆𝑐)
(𝜌,✓)
−−−−→

(∅, ∅, 𝑠 ′𝑐 , 𝑆 ′𝑐) and for all 𝑝 ∈ I(𝑐), 𝜇𝑐 (𝑝) =M(𝑝) (𝜌).

Proof. See appendix. □

Rule 4 together with the small-step operational semantics
of Figure 4 entails the property stated in Lemma 3.2, that a
total firing map is sufficient for each primitive component
to enter in communication and exchange valid messages on
shared ports.

We useM 𝑟⇒∗ M ′ to denote the 𝑛 successive applications
of⇒ whose sequence of labels is the sequence 𝑟 . We write
M 𝑟⇒∗ if there existsM ′ such thatM 𝑟⇒∗ M ′, and for all
sequences of assignments 𝑟 ′ there does not existM ′′ such
thatM ′ 𝑟 ′⇒∗ M ′′. We useM 𝜎⇒𝜔 if, for any 𝑛 ∈ N, there
existsM ′ such thatM 𝑠⇒∗ M ′ with 𝑠 = ⟨𝜎 (0), ..., 𝜎 (𝑛 − 1)⟩.
Given 𝐶 = 𝑆1 ∩ ... ∩ 𝑆𝑛 , we use [[[𝐶]]] to denote the set:

[[[𝐶]]] = {𝑠 | M 𝑠⇒∗} ∪ {𝜎 | M
𝜎⇒𝜔 }

where M quantifies over all initial configurations of the
formM(𝑐) = {(∅, ∅, 𝜄𝑐 , 𝑆𝑐)} andM(𝑝) = ∅ for all primitive
component 𝑐 ∈ 𝐶 and 𝑝 ∈ 𝑃 .

Theorem 3.3. For any component 𝐶 , [[[𝐶]]] ∩ J𝜔K ⊆ J𝐶K.

As previously stated, the idealistic and realistic semantics
differ in the class of behavior that each captures. Theorem 3.3
states that every infinite run operationally constructed with
the realistic semantics is also an element of the idealistic
semantics. There is a class of components 𝐶 such that the
converse holds, and [[[𝐶]]] ∩ J𝜔K = J𝐶K. Those components
are such that every run satisfies the causality imposed by
the realistic semantics, and all the put and get operations
are paired with a corresponding receiver and sender. We
call such component causal and closed. Section 4 proposes
a runtime to distribute and execute such causal and closed
composite component.

7

771

772

773

774

775

776

777

778

779

780

781

782

783

784

785

786

787

788

789

790

791

792

793

794

795

796

797

798

799

800

801

802

803

804

805

806

807

808

809

810

811

812

813

814

815

816

817

818

819

820

821

822

823

824

825

Conference’17, July 2017, Washington, DC, USA Christopher A. Esterhuyse, Benjamin Lion, Hans-Dieter A. Hiep, Farhad Arbab

826

827

828

829

830

831

832

833

834

835

836

837

838

839

840

841

842

843

844

845

846

847

848

849

850

851

852

853

854

855

856

857

858

859

860

861

862

863

864

865

866

867

868

869

870

871

872

873

874

875

876

877

878

879

880

4 Distributed Runtime
In Section 3 we defined the realistic semantics of PDL, which
generates runs given a protocol. It relies on trivial access to
the configuration, making it suitable for an implementation
in shared memory. In this section, we adapt the realistic se-
mantics to a context in which the configuration is distributed
over a physical network. This forms the basis of a distributed
runtime which serves as the platform that drives the com-
munications between a set of distributed applications given
their distributed, shared protocol, specified just in time.

Distributed primitives. In this setting, each primitive
in a protocol works autonomously within its own memory
space, unable to directly act on the contents of its peers’ mem-
ory. Primitives can work together indirectly by sending and
receiving control messages; note that these are distinct from
the messages that components put and get at ports. A sys-
tem of distributed primitives consists of nodes in a transport
graph whose edges characterize neighboring primitive pairs,
sufficiently aware of each other to exchange control mes-
sages. We assume that every primitive can send itself control
messages, i.e., each primitive is its own neighbor.
The transport of control messages is assumed to be re-

liable, i.e., all messages sent are eventually received after
some finite time, but not necessarily in the same order as
they were sent. Neighbors 𝐴 and 𝐵 can cooperate to realize
the reliable transmission of control message𝑚 from 𝐴 to 𝐵
as follows. 𝐴 repeats𝑚𝑠𝑔(𝑚) at regular intervals until it re-
ceives 𝑎𝑐𝑘 (𝑚). 𝐵 sends 𝑎𝑐𝑘 (𝑚) whenever it receives𝑚𝑠𝑔(𝑚).
Later in this section, we require that control messages sent
during a round must be received within that round only, i.e.,
control messages from previous rounds are ignored. This
can be achieved by numbering each control message with
the round number in which it was sent. Recipients discard
incoming messages with an old round number.

For convenience, we introduce replication as an abstraction
over control message exchange. Neighbors 𝐴 and 𝐵 main-
tain an eventually-consistent replica of a set 𝐸 as follows if
(1) both replicas are initially consistent, and (2) elements are
never removed from a replica. For each element 𝑒 added by
𝐴 to its replica, 𝐴 sends a control message to 𝐵 instructing 𝐵
to likewise add 𝑒 to its replica. The eventual consistency of
𝐸’s replicas follows from reliability. To replicate a (partial)
function, it suffices to replicate its set of input-output pairs.

Decision tree. As a given protocol may denote several
acceptable runs, generating the next step requires a decision,
selecting one in particular. In the case of shared memory,
it suffices for the system as a whole to decide arbitrarily.
However, distributed primitives arriving at the same deci-
sion presents a consensus problem. We opt to centralize the
decision at a fixed leader primitive, whose arbitrary decisions

Amy Bob Cho

Dan Eli

𝑝0

𝑝1
𝑝2 𝑝3

𝑝4

𝑝5

Figure 5. Example of a transport graph (black, solid edges)
overlaid by a decision tree (blue, dashed edges), and linkage
(red, dotted edges and port labels 𝑝0−5).

are adopted by all other primitives. This can be understood
as indirectly ordering steps by directly ordering primitives.2

We say a graph is overlaid atop another if both have iden-
tical nodes, and each edge in the former corresponds to an
edge in the latter.We designate the root of a fixed decision tree
𝐺𝐷 overlaid atop a transport graph as the leader of the latter
graph. Note that a decision tree is necessarily contiguous3,
i.e., there exists a path in the tree between each pair of primi-
tives. A decision tree orders the set of primitives by breaking
the symmetry between parents and children, and defining a
path for each primitive to and from the leader. Later, we take
for granted that all primitives are able to come to consensus
on a value following the leader’s decision, propagated using
the wave algorithm, centralized at the leader. [22] Figure 5
gives an example of an overlaid decision tree.

Linkage. Thus far, we imposed no restriction on primi-
tives’ access to ports. However, there is value in prescribing
a unique putter and getter per port 𝑝 . Concretely, a given
linkage 𝐿 : 𝑃 → B→ 𝐶 allows a component 𝑐 if and only if
∀𝑝 ∈ I(𝑐), 𝑐 ′ ∈ 𝑝𝑟𝑖𝑚(𝑐) : (𝑝 ∈ I𝑝 (𝑐 ′) → 𝐿(𝑝) (⊥) = 𝑐 ′) ∧
(𝑝 ∈ I𝑔 (𝑐 ′) → 𝐿(𝑝) (⊤) = 𝑐 ′), where 𝑝𝑟𝑖𝑚(𝑐) returns the
primitives of component 𝑐 . We say port 𝑝 links its putter 𝑐𝑝
to its getter 𝑐𝑔 when 𝐿(𝑝) (⊥) = 𝑐𝑝 ∧𝐿(𝑝) (⊤) = 𝑐𝑔 . A linkage
can inform the distribution of port information over prim-
itives. Figure 5 gives an example of a linkage depicted as
a graph overlaid atop a transport graph, with each port 𝑝
depicted as a 𝑝-labeled edge, directed from putter to getter.

Note that there may not exist a linkage that allows a given
component 𝑐 , specifically, if two of 𝑐’s primitives both put
or both get at some port. However, given a component 𝑐 ,
we can derive a component 𝑐 ′ and a linkage 𝐿, such that
I(𝑐 ′) ⊆ I(𝑐), and 𝑐 ′ has the same behavior after hiding all
of its ports not in I(𝑐). Intuitively, the procedure works by
mapping a port with multiple putters and/or multiple getters
into several ports, whose values are then kept equivalent by
newly-added primitives. This is the same scheme used in the
definition of the coloring semantics of Reo [16].

2Consensus follows if one directly orders steps. For example, each primitive
selects the maximum. However, this requires that all steps be known, which
is far less practical than requiring that all primitives be known.
3We use ‘contiguous’ for what is often called ‘connected component’ in the
literature to avoid confusion with out notion of ‘component’.

8

881

882

883

884

885

886

887

888

889

890

891

892

893

894

895

896

897

898

899

900

901

902

903

904

905

906

907

908

909

910

911

912

913

914

915

916

917

918

919

920

921

922

923

924

925

926

927

928

929

930

931

932

933

934

935

Reowolf: Executable, Compositional, Synchronous Protocol Specifications Conference’17, July 2017, Washington, DC, USA

936

937

938

939

940

941

942

943

944

945

946

947

948

949

950

951

952

953

954

955

956

957

958

959

960

961

962

963

964

965

966

967

968

969

970

971

972

973

974

975

976

977

978

979

980

981

982

983

984

985

986

987

988

989

990

Given the protocol definitions of 𝑆𝑎𝑚𝑒 and 𝑅𝑒𝑝 of Figure 1,
let 𝑐 ′ be initialized to 𝑐 , and then modified as follows:
• While primitives 𝑐1 and 𝑐2 of 𝑐 ′ put at port 𝑝:
Take fresh ports {𝑝1, 𝑝 ′1, 𝑝2, 𝑝 ′2}. Replace occurrences of
𝑝 within puts in 𝑐1 and in 𝑐2 to 𝑝1 and 𝑝2 respectively.
Finally, replace 𝑐 ′ with 𝑐 ′ ∩ 𝑆𝑎𝑚𝑒 (𝑝 ′1, 𝑝 ′2, 𝑝).
• While primitives 𝑐1 and 𝑐2 of 𝑐 ′ get at port 𝑝:
Take fresh ports {𝑝1, 𝑝 ′1, 𝑝2, 𝑝 ′2}. Replace occurrences
of 𝑝 within get in 𝑐1 and in 𝑐2 to 𝑝1 and 𝑝2 respectively.
Finally, replace 𝑐 ′ with 𝑐 ′ ∩ 𝑅𝑒𝑝 (𝑝, 𝑝 ′1, 𝑝 ′2).

After each step, 𝑝 has one fewer putter or getter in each
case, respectively. Each fresh port always has one of each.
Ultimately, each port in I(𝑐 ′) has at most one putter and
one getter. As such, a linkage allowing 𝑐 ′ necessarily exists.
As expressed by Lemma 4.1, the behaviors of 𝑐 and 𝑐 ′

are equivalent once the added fresh ports are hidden in 𝑐 ′.
This is because the added primitives preserve the equality
of values at ports that were previously not distinguished,
and introduce causal dependencies only for gets on their
respective puts, as is also the case in 𝑐 .

For simplicity henceforth, we assume that primitive 𝑐 puts
at a port 𝑝 if and only if 𝑐 is 𝑝’s putter, and likewise for get.
Lemma 4.1. For all 𝑐 ∈ 𝐶 , J𝑐K = J∃𝑝1. ... ∃𝑝𝑛 . 𝑐 ′K where
I(𝑐 ′) \ I(𝑐) = {𝑝1, ..., 𝑝𝑛}.

Step generation. A session S = (𝑐,𝐺𝑇 ,𝐺𝐷 , 𝐿) consists of
a protocol 𝑐 decomposed into primitives which are the nodes
of a transport graph 𝐺𝐷 , overlaid by a decision tree 𝐺𝑇 and
a linkage 𝐿, where 𝐿 allows 𝑐 , and all links are neighbors.

We adapt the realistic semantics of PDL to generate a run
from the session’s protocol. In this context, the execution at
large emerges from the actions of its constituent primitives.
A run is computed incrementally, through each primitive’s
participation in two concurrent step procedures: distributed
and centralized. These procedures partition the task of ap-
plying rules 1–4 defined in Section 3.

Step generation: decentralized. The decentralized pro-
cedure applies rules 1–3, each of which requires access to
only one primitive’s state. As such, each primitive 𝑐 applies
only rules matching M(𝑐) to explore only its own state
space. In this procedure, each primitive interacts with its
peers only viaM(𝑝), which may be replicated by a neighbor.
Concretely, for each port 𝑝 ,M(𝑝) is replicated by primitives
𝐿(𝑝) (0) and 𝐿(𝑐) (1). In this manner, neighboring primitives
cooperate in the exploration of their respective state spaces;
puts at 𝑝 write elements toM(𝑝) for 𝑝’s getter to read.

Step generation: centralized. The centralized procedure
aggregates information at the leader until it is sufficiently
informed to apply rule 4. This occurs once per completed
round, and results in all primitives updating their own states
to reflect the newly-identified step in the run.
We say a firing map 𝜌 satisfies a primitive 𝑐 if and only

if 𝑐 has explored a state matching (𝜌 ′, 𝜇, 𝑠, sync ; 𝑆) where

𝜌 ′ ⊆ 𝜌 . We say a firing map 𝜌 covers a primitive 𝑐 if and
only if I(𝑐) ⊆ 𝑑𝑜𝑚(𝜌). By a solutionwe refer to a firing map
that satisfies and covers all primitives. By Lemma 3.2, each
solution in a round corresponds to a particular step. Thus, it
suffices for primitives to reach consensus on a solution; recall
that this follows from the leader identifying and deciding on
a solution. A firing map 𝜌 is a candidate of a primitive 𝑐 if 𝜌
satisfies and covers each primitive in the decision sub-tree
rooted at 𝑐 . In the following, we give an algorithm such that
the leader can discover its candidates. This suffices, as we
show that the leader’s candidates coincide with solutions.
A candidate is defined in terms of a global view on the

decision tree, which is useful for characterizing solutions.
However, 𝑐’s candidates are defined in terms of information
not always local to 𝑐 . To proceed, we introduce an invariant,
per primitive 𝑐 , whose preservation requires only 𝑐-local
information. Next, we extend the configuration to include
N , such that N(𝑐) returns the set of 𝑐’s candidates, for each
primitive 𝑐 .N is distributed such thatN(𝑐) is replicated at 𝑐
and 𝑐’s parent (if it exists). Observe that this lets primitives
read the candidate sets of their children. For brevity, let 𝐹 (𝑐)
return the firing maps that cover and satisfy primitive 𝑐 ; this
information is unfolded by the distributed procedure. Fur-
thermore, let 𝑄 (𝑐) return a list of firing map sets, including
𝐹 (𝑐), and N(𝑐 ′) for each 𝑐 ′ child of 𝑐 . 𝑄 (𝑐) can be under-
stood as containing all the information from which N(𝑐)
can be derived. Let each primitive 𝑐 continuously update 𝑐
to preserve the following invariant equality:

N(𝑐) = { ∀𝑞 ∈ 𝑄, ∃𝜌 ′ ∈ 𝑞 : 𝜌 ′ ⊆ 𝜌 }

Lemma 4.2. For all component 𝑐 , 𝜌 ∈ N (𝑐) if and only if,
for all 𝑐 ′ in the decision sub-tree rooted at 𝑐 , then 𝜌 ∈ N (𝑐 ′).

To see that Lemma 4.2 follows from the invariant for any
primitive, it suffices to rewrite occurrences of N(𝑐) for all 𝑐
from left to right, and to expand the quantification of 𝑞. It
becomes clear that by this inductive definition, candidates
cover and satisfy the expected set of primitives. This is ap-
parent for a primitive 𝑐 with no children, as N(𝑐) = 𝐹 (𝑐).
Each primitive 𝑐 preserves the equation by monitoring

𝑄 (𝑐) and adding candidates to N(𝑐) as follows. Initially, no
primitive has a candidate, as no states have been explored;
thus the lemma trivially holds at the start of the round. As
the set of explored states only grows, each primitive’s can-
didates only grows. It suffices for primitive 𝑐 to monitor
the sets in 𝑄 (𝑐) for new additions, and react by accordingly
adding elements to N(𝑐). Observe that is it never necessary
to add 𝜌 to N(𝑐) if 𝜌 ′ is already present, and 𝜌 ⊆ 𝜌 ′. This
is because no primitive can be satisfied and covered by the
former and not the latter. This observation allows for a sub-
stantial reduction in the number of candidates of non-leader
primitives, without affecting the leader’s decision.

Application primitives. We extend the execution of a
protocol in a session to include application primitives, each

9

991

992

993

994

995

996

997

998

999

1000

1001

1002

1003

1004

1005

1006

1007

1008

1009

1010

1011

1012

1013

1014

1015

1016

1017

1018

1019

1020

1021

1022

1023

1024

1025

1026

1027

1028

1029

1030

1031

1032

1033

1034

1035

1036

1037

1038

1039

1040

1041

1042

1043

1044

1045

Conference’17, July 2017, Washington, DC, USA Christopher A. Esterhuyse, Benjamin Lion, Hans-Dieter A. Hiep, Farhad Arbab

1046

1047

1048

1049

1050

1051

1052

1053

1054

1055

1056

1057

1058

1059

1060

1061

1062

1063

1064

1065

1066

1067

1068

1069

1070

1071

1072

1073

1074

1075

1076

1077

1078

1079

1080

1081

1082

1083

1084

1085

1086

1087

1088

1089

1090

1091

1092

1093

1094

1095

1096

1097

1098

1099

1100

representing a user application as a participant in the session.
Such a primitive is characterized by its protocol 𝑐𝑎 being
unspecified ahead of time. Rather, 𝑐𝑎 unfolds up to the end of
a round just as the round begins. This unfolding is facilitated
by synchronization, a procedure exposed by the connector
API, whose input specifies 𝑐𝑎 up to its next sync statement.
For example, below, defines 𝑐0𝑎 = 𝑐𝑎 as round 0 begins, 𝑐1𝑎 as
round 1 begins, and so on:

𝑐0𝑎 =𝑚0 → 𝑝0 ;𝑚1 → 𝑝1 ; assert ¿𝑝2 ; sync ; 𝑐1𝑎
As desired, the connector API can be simplified at the cost

of application expressiveness. For example, the connector
computes the definition of 𝑐0𝑎 above, given only the subset of
firing ports inI(𝑐𝑎), and prescribing eachmessage produced:
({𝑝0 ↦→𝑚0, 𝑝1 ↦→𝑚1}, {𝑝2}).
Once the round is completed, synchronization returns the

decided step projected onto I(𝑐𝑎), such that the application
can reflect on the outcome, e.g., by reading a port’s message.
This approach results in cooperative scheduling between an
application and its connector: synchronization passes control
flow back and forth. Primitives speculate ‘during’ a round,
and applications reflect on previous rounds and prepares for
the next round ‘between’ rounds.

Session setup. Initially, a session consists only of applica-
tion primitives, isolated in the transport graph, and with no
ports in the linkage. In the initial setup phase, applications
can cooperate to add a fresh port, its link, and the underly-
ing transport edge (if it does not already exist) all together.
Concretely, each connector is given as input: (1) the iden-
tity of the other primitive, and (2) the direction of the link.
An implementation may identify primitives using IPv4 or
similar addresses; identifiers of some sort are necessary to
facilitate consensus, as the literature shows that consensus in
arbitrary contiguous networks is impossible otherwise. [22]
To ensure that the applications have a consistent view on the
link direction, each of their primitives informs the other of
the expected direction in a control message; the procedure
fails if the primitives learn that their expectations differ.
If the transport graph is contiguous, its primitives can

complete the session setup together through the decentral-
ized construction of the decision tree. First, a leader is elected
using Chang’s echo algorithm with extinction [14]. This re-
quires that primitives’ identifiers are ordered. Second, the
echo algorithm [22] is initiated by the leader, identifying the
parents and children of each primitive amongst its neighbors.

Session transformation. An application primitive 𝑐𝑎 can
introduce new ports and primitives without disturbing its
neighbors. It can do so before or after the session setup. In
the first case, it adds a fresh port 𝑝 to I(𝑐𝑎), and updates the
linkage such that 𝐿(𝑝) (⊥) = 𝐿(𝑝) (⊤) = 𝑐𝑎 . In the second
case, it adds a new component 𝑐𝑏 to the session’s protocol 𝑐 ,
updating 𝑐 to 𝑐 ∩ 𝑐𝑏 . The 𝑐𝑏 becomes 𝑐𝑎’s (1) neighbor in
the transport graph, and (2) child in the decision tree. In

the process, 𝑐𝑎 may choose to replace any subset of occur-
rences of 𝑐𝑎 with 𝑐𝑏 in its links, transferring access to a
subset of 𝑐𝑎’s ports to 𝑐𝑏 . We assume the affected links still
correspond to edges in the transport graph.4 We extend this
functionality such that applications can also add composite
protocols by decomposing each into a set of primitives. The
connector must take extra care to preserve linkage, e.g., by
pre-processing the protocol as previously described.

Arbitrary transformations of the session are significantly
more invasive and complex, necessitating delicate distributed
procedures. Earlier work on dynamic reconfiguration of Reo
circuits [11, 30–32] shows that such transformations are pos-
sible, laying the groundwork for the same in Reowolf. In
future, we will investigate the application of graph rewriting
techniques in general [20] such as PBPO+ in particular [36]
to manipulate regions of the transport graph. The power to
alter the session dynamically adds a great deal of flexibility.
As in [35], we are particularly interested in session trans-
formations that have no effect on behavior observable to
applications, but are otherwise more desirable. As a simple
example, one edge in the decision tree is inverted, reduc-
ing the lengths of paths to the leaves, resulting in rounds
completing more quickly. For a more realistic example, con-
sider a session transformation that moves a filter component
physically closer to the source of its incoming messages.

Distributed timeout. In general, a round may continue
for an arbitrary duration without the leader making a deci-
sion. Whether or not a solution exists to be found, an appli-
cation may wish to trigger a distributed timeout in order to
restart the round, potentially providing their primitive with
a different protocol specification.
During a round, a primitive can send a timeout request

control message through the decision tree to the leader. Upon
receipt, if no decision has yet been made, the leader decides
on a timeout, which results in consensus as usual. The result-
ing distributed timeout restores the configuration to that of
the start of the round. Although this distributed procedure
may take an arbitrary duration, it is short in practice, as its
involves very little work per primitive.

5 Evaluation & Future Work
Sections 1–4 define PDL and explain its usage for driving
communications between networked applications. In this
section, we evaluate the strengths and weaknesses of this
contribution, and outline promising future developments.

Strengths. Connectors are sufficiently practical to afford
a systems-level, distributed implementation. This is evidenced
by the completion of a prototype implementation, along with

4To relax this assumption, replication must be extended to any pair of
primitives. This can be achieved via the transitive closure of replication, i.e.,
a pair can replicate 𝐸 if all primitives in a path between them replicate 𝐸.

10

1101

1102

1103

1104

1105

1106

1107

1108

1109

1110

1111

1112

1113

1114

1115

1116

1117

1118

1119

1120

1121

1122

1123

1124

1125

1126

1127

1128

1129

1130

1131

1132

1133

1134

1135

1136

1137

1138

1139

1140

1141

1142

1143

1144

1145

1146

1147

1148

1149

1150

1151

1152

1153

1154

1155

Reowolf: Executable, Compositional, Synchronous Protocol Specifications Conference’17, July 2017, Washington, DC, USA

1156

1157

1158

1159

1160

1161

1162

1163

1164

1165

1166

1167

1168

1169

1170

1171

1172

1173

1174

1175

1176

1177

1178

1179

1180

1181

1182

1183

1184

1185

1186

1187

1188

1189

1190

1191

1192

1193

1194

1195

1196

1197

1198

1199

1200

1201

1202

1203

1204

1205

1206

1207

1208

1209

1210

a technical report which includes the results of experimen-
tal testing. These work products are publicly available in a
persistent Zenodo repository [1].
By orienting their API around protocols, connectors nar-

row the gap between an application’s implementation, and
the specification of its high-level properties. This makes
applications more high-level, thus, more maintainable and
re-usable. Furthermore, one can reason about the high-level
properties of sessions via their specifications. In future, we
want middleware to automatically leverage the given proto-
cols to apply optimizations at run-time. We are particularly
interested in optimizations arising from the composition of
multiple applications’ protocols.
The connector API affords applications great flexibility,

letting them interleave their communications with the addi-
tion of protocols to be preserved. Later, we want to increase
this flexibility to enable transformations of an ongoing ses-
sion’s protocol. Applications are also free to form sessions
by identifying only their neighbors.

The distributed procedures driving the runtime are largely
decentralized, with primitives exchanging control messages
with their neighbors concurrently. Furthermore, each primi-
tive explores paths through its state space concurrently. As a
result, rounds can progress quickly by the leader deciding on
solutions found quickly; the existence of complex solutions
does not impede progress of simpler ones.

Weaknesses. A small but crucial part of the distributed
runtime involves a centralized decision event. Thus, the de-
cision tree is a single point of failure. With some adjustment,
the runtime can re-create the decision tree on demand to
bypass any failed nodes and edges, using any of several dis-
tributed algorithms [8, 9, 23]. However, we expect that the
decision tree cannot be dynamic without incurring signifi-
cant overhead. In future work we will explore empowering
applications to strike the balance themselves.

Currently, causal consistency is not preserved by protocol
composition. As a result, not all desirable properties are char-
acterized by a protocol without context. In future work we
will further develop PDL, exploring changes that either make
causality more explicitly expressed, or relax the need for runs
to be causally consistent. In investigating the latter, we can
continue to draw from work on constraint solving. [33]
Currently, connectors provide strong consistency guar-

antees, but use only one round look-ahead into protocols,
and all primitives must participate to complete the round.
In future, we want to generalize look-ahead, and let primi-
tives be replicated over physical nodes, such that progress
is robust to the failure of physical nodes and channels. Fur-
thermore, we want to investigate relaxations of PDL that let
some primitives progress, while leaving others behind, such
that overall progress is not inhibited by slow primitives.
As protocols cannot be simultaneously mutable and im-

mutable, session re-configuration and optimizations that

leverage the preservation of protocols are mutually-exclusive
features. In future work we will explore letting applications
make this trade-off per protocol, as best suits their needs.

6 Related Work
This section compares the approach of Reowolf to that of
several works with comparable problems or solutions.

Multi-party session types. Session types apply estab-
lished type-checking disciplines to message-passing between
networked processes. [18] The behavior of a process or chan-
nel endpoint is specified by a (local) session type used to
check the correctness of the process’s implementation. The
trick is to assign types such that correctness of a session’s
behavior follows from that of its processes. Later work [26]
introduced global session types (‘GST’) for characterizing
communications between any number of peers. Projection
of a GST onto each of a session’s processes assigns it a local
session type used to check local correctness as before.
GSTs and PDL have in common that they formalize the

behavior of multi-party sessions, and are ultimately used
to ensure that programs behave as specified. However, they
differ in specificity, and in which context they are used. Both
GSTs and PDL protocols can express choice by defining their
behavior as a function of values chosen at runtime. PDL
protocols express choice by reflecting on the messages they
observe at their ports; they are able to constrain the choice
made through assertions, but there is no specification of how
the choice is made. In contrast, GSTs associate choices with
message values originating at a specified sender, thereby
fixing the sender as being solely responsible for making the
choice. This demonstrates how PDL relies more extensively
on its runtime system for its execution.
Ongoing work in session types muddies the aforemen-

tioned distinctions between PDL and GSTs, introducing GST
variations that don’t prescribe which process makes a choice.

SoftwareDefinedNetworks (SDN). SoftwareDefinedNet-
works [27] distinguish between the control and data planes.
On the control plane, messages are exchanged to update the
configuration of some devices on the network; while the data
plane deals with communication protocols. As an example,
OpenFLow is a control protocol used for remote administra-
tion of switch’s packet forwarding tables. Rules can be made
separately on a controller, and dynamically pushed to the
switches on a network, changing therefore the routing algo-
rithm [34]. SDN comes also together with the virtualisation
of network functions (also abbreviated NFV). The OpenStack,
mainly maintained by Cisco, is a set of virtualized network
services that can be deployed and configured remotely.

SDN and Reowolfmainly differ in their purpose. SDN eases
the administration of networks, while Reowolf enables multi-
party synchronous communications. They both, however,
aim at taking networks and protocols as a first class concepts

11

1211

1212

1213

1214

1215

1216

1217

1218

1219

1220

1221

1222

1223

1224

1225

1226

1227

1228

1229

1230

1231

1232

1233

1234

1235

1236

1237

1238

1239

1240

1241

1242

1243

1244

1245

1246

1247

1248

1249

1250

1251

1252

1253

1254

1255

1256

1257

1258

1259

1260

1261

1262

1263

1264

1265

Conference’17, July 2017, Washington, DC, USA Christopher A. Esterhuyse, Benjamin Lion, Hans-Dieter A. Hiep, Farhad Arbab

1266

1267

1268

1269

1270

1271

1272

1273

1274

1275

1276

1277

1278

1279

1280

1281

1282

1283

1284

1285

1286

1287

1288

1289

1290

1291

1292

1293

1294

1295

1296

1297

1298

1299

1300

1301

1302

1303

1304

1305

1306

1307

1308

1309

1310

1311

1312

1313

1314

1315

1316

1317

1318

1319

1320

in their solutions (applications barely talk about sockets in
SDN, but more about quality requirements).

Synchronous languages. Besides Reo [2–4], otherworks
have been done on the design of synchronous languages. For
instance, the imperative language Esterel [7], and the declar-
ative language LUSTRE [12], are languages whose semantic
models are similar to ours, in that they consider histories as
infinite sequences of port assignments [6]. The difference is
mainly in how each model generates such histories. Esterel
and LLUSTRE use a clock synchronization mechanism. Our
work differs in that in our model time is not explicit, but im-
plicitly progresses via sync statements: only by performing
sync all components synchronize.

Linda. Linda is a coordination language [10] whose prim-
itives communicate asynchronously through a shared data
space (called tuple space). Processes generate messages in
the tuple space, which are eventually withdrawn by other
processes. The operation of sending a message to the tuple
space is non-blocking, while reading and removing messages
may block. Synchrony in Linda is thus modeled as a sequence
of send and receive operations between two processes.

Bulk Synchronous Parallel (BSP). BSP was an architec-
ture suggested by Valiant in [39]. The idea was to build a con-
ceptual bridge between software and hardware (analogous to
Von Neumann architecture for sequential computation) for
parallel computation. The architecture led to BSPlib, a library
used for parallel computation [25], in which synchroniza-
tion is separated from communication. A BSP computation
consists of a sequence of parallel supersteps. A supersteps
contains, in order, a phase of local computation at each pro-
cess, a phase of communication between processes, and bar-
rier synchronization among the processes. Reowolf has in
common with BSP that multi-party synchronization is a fea-
ture of the language. However, BSP restricts to processes
within the same machine and, to our knowledge, does not
consider an implementation over an IP network. Moreover,
BSP mainly does not consider data synchronization, while
our runtime includes speculation and constraint solving.

MPI. Message passing interface (MPI) was developed in-
crementally throughout the 1990’s. It is an interface for en-
abling a programming model for communicating synchro-
nous [24], particularly popular in computational science.
MPI and Reowolf’s connectors have in common that they
provide an abstraction over a multi-party session in which
user applications exchange messages. MPI-2 lets processes
dynamically instantiate other processes, much as Reowolf
lets components instantiate other components. MPI offers
variations of message-passing operations; in their applica-
tions, programmers effectively configure their usage of MPI’s
network abstraction to maximize runtime performance.
Reowolf differs from MPI in unifying the two features

above into the activity of adding protocols to the session,

(1) specifying behavior, and (2) delegating work to a new
entity. These two activities coincide to enable reasoning
about the latter in terms of reasoning about the former.

OpenMP. OpenMP is anAPI for introducingmulti-threaded
parallelism into sequential implementations with minimal
impact on the source code. [13] For example, a C program-
mer annotates a for-block with the parallel for compiler
directive, partitioning the work of the loop body over a set
of worker threads. These directives accept keyword anno-
tations on local variables, providing programmers control
over how values are replicated and accessed by workers.

OpenMP and Reowolf have in common that they introduce
a high-level language for coordinating concurrent processes,
aiming to minimize the coupling between the computational
task and inter-worker coordination. However, OpenMP dif-
fers from Reowolf in the task it aims to simplify. OpenMP
eases static reasoning about a large code base. Reowolf eases
reasoning about the behavior of modular components as part
of a larger network context to be realized at runtime.

7 Conclusion
Connectors show promise as a multi-party session abstrac-
tion, interfacing the transport layer below with the applica-
tion layer above. Like sockets, connectors facilitate message
passing between their applications, distributed over physical
networks such as the Internet. Unlike sockets, the connector
API is oriented around applications dynamically adding PDL
protocols to be preserved in the session. Two objects coin-
cide in a protocol: (1) a specification of a session’s properties,
and (2) a distributed program a session can execute.
Via connectors, protocols become a powerful vehicle for

capturing and communicating the application’s requirements
in the OS and further into the network. On the one hand,
applications consequently have more flexible and abstract
implementations, becoming easier to maintain and alter. On
the other hand, the runtime gets insight into the applications’
requirements. There is much future work to be done to con-
tinue to exploit this insight, for example, by transparently
optimizing the efficiency of an ongoing session. This also
includes developments to mitigate the current weaknesses.
For example, the distributed runtime must be made more
flexible to changes in the physical network. Further oppor-
tunities are expected to arise from the PDL, as it expands to
capture new high-level protocol properties.

These contributions build on previous work to develop a
paradigm in which network protocols are concrete artifacts.
Our ambition is to cover as much of the OSI network stack as
possible, such that communications over the Internet become
more high-level, reliable, transparent, and efficient.

References
[1] 2020. Reowolf 1.0 deliverables Zenodo repository. (url and doi omitted

to preserve anonymity).
12

1321

1322

1323

1324

1325

1326

1327

1328

1329

1330

1331

1332

1333

1334

1335

1336

1337

1338

1339

1340

1341

1342

1343

1344

1345

1346

1347

1348

1349

1350

1351

1352

1353

1354

1355

1356

1357

1358

1359

1360

1361

1362

1363

1364

1365

1366

1367

1368

1369

1370

1371

1372

1373

1374

1375

Reowolf: Executable, Compositional, Synchronous Protocol Specifications Conference’17, July 2017, Washington, DC, USA

1376

1377

1378

1379

1380

1381

1382

1383

1384

1385

1386

1387

1388

1389

1390

1391

1392

1393

1394

1395

1396

1397

1398

1399

1400

1401

1402

1403

1404

1405

1406

1407

1408

1409

1410

1411

1412

1413

1414

1415

1416

1417

1418

1419

1420

1421

1422

1423

1424

1425

1426

1427

1428

1429

1430

[2] Farhad Arbab. 2004. Reo: a channel-based coordination model for
component composition. Mathematical Structures in Computer Science
14, 3 (2004), 329–366. https://doi.org/10.1017/S0960129504004153

[3] Farhad Arbab. 2011. Puff, The Magic Protocol. In Formal Modeling:
Actors, Open Systems, Biological Systems - Essays Dedicated to Carolyn
Talcott on the Occasion of Her 70th Birthday (Lecture Notes in Computer
Science, Vol. 7000), Gul Agha, Olivier Danvy, and José Meseguer (Eds.).
Springer, 169–206. https://doi.org/10.1007/978-3-642-24933-4_9

[4] Farhad Arbab and Jan J. M. M. Rutten. 2002. A Coinductive Calculus
of Component Connectors. In Recent Trends in Algebraic Development
Techniques, 16th International Workshop, WADT 2002, Frauenchiemsee,
Germany, September 24-27, 2002, Revised Selected Papers (Lecture Notes
in Computer Science, Vol. 2755), Martin Wirsing, Dirk Pattinson, and
Rolf Hennicker (Eds.). Springer, 34–55. https://doi.org/10.1007/978-3-
540-40020-2_2

[5] Christel Baier, Marjan Sirjani, Farhad Arbab, and Jan J. M. M. Rutten.
2006. Modeling component connectors in Reo by constraint automata.
Sci. Comput. Program. 61, 2 (2006), 75–113. https://doi.org/10.1016/j.
scico.2005.10.008

[6] Albert Benveniste, Paul Le Guernic, Yves Sorel, andMichel Sorine. 1992.
A Denotational Theory of Synchronous Reactive Systems. Inf. Comput.
99, 2 (1992), 192–230. https://doi.org/10.1016/0890-5401(92)90030-J

[7] Gérard Berry and Georges Gonthier. 1992. The Esterel Synchronous
Programming Language: Design, Semantics, Implementation. Sci.
Comput. Program. 19, 2 (1992), 87–152. https://doi.org/10.1016/0167-
6423(92)90005-V

[8] Marc Bui, Franck Butelle, and Christian Lavault. 2013. A Distributed
Algorithm for Constructing aMinimumDiameter Spanning Tree. CoRR
abs/1312.1961 (2013). arXiv:1312.1961 http://arxiv.org/abs/1312.1961

[9] Marc Bui, Franck Butelle, and Christian Lavault. 2013. A Distributed
Algorithm for Constructing aMinimumDiameter Spanning Tree. CoRR
abs/1312.1961 (2013). arXiv:1312.1961 http://arxiv.org/abs/1312.1961

[10] Nadia Busi, Roberto Gorrieri, and Gianluigi Zavattaro. 2000. On the
Expressiveness of Linda Coordination Primitives. Inf. Comput. 156,
1-2 (2000), 90–121. https://doi.org/10.1006/inco.1999.2823

[11] C.) Krause Christian C. (born Köhler. 2011. Reconfigurable component
connectors. Ph.D. Dissertation. https://doi.org/hdl:1887/17718

[12] Paul Caspi, Daniel Pilaud, Nicolas Halbwachs, and John Plaice. 1987.
Lustre: A Declarative Language for Programming Synchronous Sys-
tems. In Conference Record of the Fourteenth Annual ACM Symposium
on Principles of Programming Languages, Munich, Germany, January
21-23, 1987. ACM Press, 178–188. https://doi.org/10.1145/41625.41641

[13] Rohit Chandra, Leo Dagum, David Kohr, RameshMenon, DrorMaydan,
and Jeff McDonald. 2001. Parallel programming in OpenMP. Morgan
kaufmann.

[14] Ernest J. H. Chang. 1982. Echo Algorithms: Depth Parallel Operations
on General Graphs. IEEE Trans. Software Eng. 8, 4 (1982), 391–401.
https://doi.org/10.1109/TSE.1982.235573

[15] Behnaz Changizi, Natallia Kokash, and Farhad Arbab. 2012. A
constraint-based method to compute semantics of channel-based co-
ordination models. In Proceedings of the International Conference on
Software Engineering Advances (ICSEA). IARIA.

[16] Dave Clarke, David Costa, and Farhad Arbab. 2007. Connector colour-
ing I: Synchronisation and context dependency. Sci. Comput. Program.
66, 3 (2007), 205–225. https://doi.org/10.1016/j.scico.2007.01.009

[17] Dave Clarke, José Proença, Alexander Lazovik, and Farhad Arbab. 2011.
Channel-based coordination via constraint satisfaction. Sci. Comput.
Program. 76, 8 (2011), 681–710. https://doi.org/10.1016/j.scico.2010.05.
004

[18] Mariangiola Dezani-Ciancaglini and Ugo de’Liguoro. 2009. Sessions
and Session Types: An Overview. In Web Services and Formal Methods,
6th International Workshop, WS-FM 2009, Bologna, Italy, September
4-5, 2009, Revised Selected Papers (Lecture Notes in Computer Science,
Vol. 6194), Cosimo Laneve and Jianwen Su (Eds.). Springer, 1–28. https:

//doi.org/10.1007/978-3-642-14458-5_1
[19] Kasper Dokter and Farhad Arbab. 2018. Rule-Based Form for Stream

Constraints. In Coordination Models and Languages - 20th IFIP WG
6.1 International Conference, COORDINATION 2018, Held as Part of
the 13th International Federated Conference on Distributed Computing
Techniques, DisCoTec 2018, Madrid, Spain, June 18-21, 2018. Proceedings
(Lecture Notes in Computer Science, Vol. 10852), Giovanna Di Marzo
Serugendo and Michele Loreti (Eds.). Springer, 142–161. https://doi.
org/10.1007/978-3-319-92408-3_6

[20] Hartmut Ehrig, Karsten Ehrig, Ulrike Prange, and Gabriele Taentzer.
2006. Fundamentals of Algebraic Graph Transformation. Springer.
https://doi.org/10.1007/3-540-31188-2

[21] Christopher A. Esterhuyse and Hans-Dieter A. Hiep. 2019. Reowolf:
Synchronous Multi-party Communication over the Internet. In Formal
Aspects of Component Software - 16th International Conference, FACS
2019, Amsterdam, The Netherlands, October 23-25, 2019, Proceedings
(Lecture Notes in Computer Science, Vol. 12018), Farhad Arbab and Sung-
Shik Jongmans (Eds.). Springer, 235–242. https://doi.org/10.1007/978-
3-030-40914-2_12

[22] Wan Fokkink. 2018. Distributed algorithms: an intuitive approach. MIT
Press.

[23] Robert G. Gallager, Pierre A. Humblet, and Philip M. Spira. 1983. A
Distributed Algorithm for Minimum-Weight Spanning Trees. ACM
Trans. Program. Lang. Syst. 5, 1 (1983), 66–77. https://doi.org/10.1145/
357195.357200

[24] William Gropp. 2011. MPI (Message Passing Interface). In Encyclopedia
of Parallel Computing, David A. Padua (Ed.). Springer, 1184–1190. https:
//doi.org/10.1007/978-0-387-09766-4_222

[25] JonathanM. D. Hill, Bill McColl, Dan C. Stefanescu, MarkW. Goudreau,
Kevin J. Lang, Satish Rao, Torsten Suel, Thanasis Tsantilas, and Rob H.
Bisseling. 1998. BSPlib: The BSP programming library. Parallel Comput.
24, 14 (1998), 1947–1980. https://doi.org/10.1016/S0167-8191(98)00093-
3

[26] Kohei Honda, Nobuko Yoshida, and Marco Carbone. 2008. Multiparty
asynchronous session types. In Proceedings of the 35th ACM SIGPLAN-
SIGACT Symposium on Principles of Programming Languages, POPL
2008, San Francisco, California, USA, January 7-12, 2008, George C.
Necula and Philip Wadler (Eds.). ACM, 273–284. https://doi.org/10.
1145/1328438.1328472

[27] Fei Hu, Qi Hao, and Ke Bao. 2014. A Survey on Software-Defined
Network and OpenFlow: From Concept to Implementation. IEEE
Commun. Surv. Tutorials 16, 4 (2014), 2181–2206. https://doi.org/10.
1109/COMST.2014.2326417

[28] Sung-Shik Theodorus Quirinus Jongmans. 2016. Automata-theoretic
protocol programming. Ph.D. Dissertation. Leiden University.

[29] Sung-Shik T. Q. Jongmans and Farhad Arbab. 2012. Overview of
Thirty Semantic Formalisms for Reo. Sci. Ann. Comput. Sci. 22, 1 (2012),
201–251. https://doi.org/10.7561/SACS.2012.1.201

[30] Christian Krause, David Costa, José Proença, and Farhad Arbab. 2008.
Reconfiguration of Reo Connectors Triggered by Dataflow. Electron.
Commun. Eur. Assoc. Softw. Sci. Technol. 10 (2008).

[31] C. Krause, H. Giese, and E.P. Vink, de. 2013. Compositional and
behavior-preserving reconfiguration of component connectors in Reo.
Journal of Visual Languages and Computing 24, 3 (2013), 153–168.
https://doi.org/10.1016/j.jvlc.2012.09.002

[32] Christian Krause, Ziyan Maraikar, Alexander Lazovik, and Farhad
Arbab. 2011. Modeling dynamic reconfigurations in Reo using high-
level replacement systems. Sci. Comput. Program. 76, 1 (2011), 23–36.
https://doi.org/10.1016/j.scico.2009.10.006

[33] Vipin Kumar. 1992. Algorithms for constraint-satisfaction problems:
A survey. AI magazine 13, 1 (1992), 32–32.

[34] Nick McKeown, Thomas E. Anderson, Hari Balakrishnan, Guru M.
Parulkar, Larry L. Peterson, Jennifer Rexford, Scott Shenker, and

13

https://doi.org/10.1017/S0960129504004153
https://doi.org/10.1007/978-3-642-24933-4_9
https://doi.org/10.1007/978-3-540-40020-2_2
https://doi.org/10.1007/978-3-540-40020-2_2
https://doi.org/10.1016/j.scico.2005.10.008
https://doi.org/10.1016/j.scico.2005.10.008
https://doi.org/10.1016/0890-5401(92)90030-J
https://doi.org/10.1016/0167-6423(92)90005-V
https://doi.org/10.1016/0167-6423(92)90005-V
http://arxiv.org/abs/1312.1961
http://arxiv.org/abs/1312.1961
https://doi.org/10.1006/inco.1999.2823
https://doi.org/hdl:1887/17718
https://doi.org/10.1145/41625.41641
https://doi.org/10.1109/TSE.1982.235573
https://doi.org/10.1016/j.scico.2007.01.009
https://doi.org/10.1016/j.scico.2010.05.004
https://doi.org/10.1016/j.scico.2010.05.004
https://doi.org/10.1007/978-3-642-14458-5_1
https://doi.org/10.1007/978-3-642-14458-5_1
https://doi.org/10.1007/978-3-319-92408-3_6
https://doi.org/10.1007/978-3-319-92408-3_6
https://doi.org/10.1007/3-540-31188-2
https://doi.org/10.1007/978-3-030-40914-2_12
https://doi.org/10.1007/978-3-030-40914-2_12
https://doi.org/10.1145/357195.357200
https://doi.org/10.1145/357195.357200
https://doi.org/10.1007/978-0-387-09766-4_222
https://doi.org/10.1007/978-0-387-09766-4_222
https://doi.org/10.1016/S0167-8191(98)00093-3
https://doi.org/10.1016/S0167-8191(98)00093-3
https://doi.org/10.1145/1328438.1328472
https://doi.org/10.1145/1328438.1328472
https://doi.org/10.1109/COMST.2014.2326417
https://doi.org/10.1109/COMST.2014.2326417
https://doi.org/10.7561/SACS.2012.1.201
https://doi.org/10.1016/j.jvlc.2012.09.002
https://doi.org/10.1016/j.scico.2009.10.006

1431

1432

1433

1434

1435

1436

1437

1438

1439

1440

1441

1442

1443

1444

1445

1446

1447

1448

1449

1450

1451

1452

1453

1454

1455

1456

1457

1458

1459

1460

1461

1462

1463

1464

1465

1466

1467

1468

1469

1470

1471

1472

1473

1474

1475

1476

1477

1478

1479

1480

1481

1482

1483

1484

1485

Conference’17, July 2017, Washington, DC, USA Christopher A. Esterhuyse, Benjamin Lion, Hans-Dieter A. Hiep, Farhad Arbab

1486

1487

1488

1489

1490

1491

1492

1493

1494

1495

1496

1497

1498

1499

1500

1501

1502

1503

1504

1505

1506

1507

1508

1509

1510

1511

1512

1513

1514

1515

1516

1517

1518

1519

1520

1521

1522

1523

1524

1525

1526

1527

1528

1529

1530

1531

1532

1533

1534

1535

1536

1537

1538

1539

1540

Jonathan S. Turner. 2008. OpenFlow: enabling innovation in cam-
pus networks. Comput. Commun. Rev. 38, 2 (2008), 69–74. https:
//doi.org/10.1145/1355734.1355746

[35] Nuno Oliveira and Luís S. Barbosa. 2013. On the reconfiguration of
software connectors. In SAC ’13: Proceedings of the 28th Annual ACM
Symposium on Applied Computing. 1885–1892. https://doi.org/10.1145/
2480362.2480712

[36] Roy Overbeek, Jörg Endrullis, and Aloïs Rosset. 2021. Graph Rewriting
and Relabeling with PBPO+. In Graph Transformation - 14th Inter-
national Conference, ICGT 2021, Held as Part of STAF 2021, Virtual
Event, June 24-25, 2021, Proceedings (Lecture Notes in Computer Science,
Vol. 12741), Fabio Gadducci and Timo Kehrer (Eds.). Springer, 60–80.
https://doi.org/10.1007/978-3-030-78946-6_4

[37] José Proença and Dave Clarke. 2013. Data abstraction in coordination
constraints. In European Conference on Service-Oriented and Cloud
Computing. Springer, 159–173.

[38] José Proença and Dave Clarke. 2013. Interactive interaction constraints.
In International Conference on Coordination Languages and Models.
Springer, 211–225.

[39] Leslie G. Valiant. 2011. A bridging model for multi-core computing. J.
Comput. Syst. Sci. 77, 1 (2011), 154–166. https://doi.org/10.1016/j.jcss.
2010.06.012

14

https://doi.org/10.1145/1355734.1355746
https://doi.org/10.1145/1355734.1355746
https://doi.org/10.1145/2480362.2480712
https://doi.org/10.1145/2480362.2480712
https://doi.org/10.1007/978-3-030-78946-6_4
https://doi.org/10.1016/j.jcss.2010.06.012
https://doi.org/10.1016/j.jcss.2010.06.012

1541

1542

1543

1544

1545

1546

1547

1548

1549

1550

1551

1552

1553

1554

1555

1556

1557

1558

1559

1560

1561

1562

1563

1564

1565

1566

1567

1568

1569

1570

1571

1572

1573

1574

1575

1576

1577

1578

1579

1580

1581

1582

1583

1584

1585

1586

1587

1588

1589

1590

1591

1592

1593

1594

1595

Reowolf: Executable, Compositional, Synchronous Protocol Specifications Conference’17, July 2017, Washington, DC, USA

1596

1597

1598

1599

1600

1601

1602

1603

1604

1605

1606

1607

1608

1609

1610

1611

1612

1613

1614

1615

1616

1617

1618

1619

1620

1621

1622

1623

1624

1625

1626

1627

1628

1629

1630

1631

1632

1633

1634

1635

1636

1637

1638

1639

1640

1641

1642

1643

1644

1645

1646

1647

1648

1649

1650

Appendix
Proof sketch for Theorem 2.1. We proceed inductively on the
structure of the statement, and show that for all 𝜎 ∈ Δ,
𝜎 ∈ J𝑆K if and only if there exist 𝑠 ∈ Σ and 𝜏 such that
((𝑠, 0), 𝜎, 𝜏) ∈ [𝑆]. We give the proof for the branching, se-
quential, and loop constructs. We use 𝑠 to denote an arbitrary
state in Σ, and 𝜏 and 𝜆 for arbitrary streams of states in O(Σ).
Case if 𝑏 then 𝑆1 else 𝑆2 fi. Suppose that J𝑆1K = {𝜎 |
((𝑠, 0), 𝜎, 𝜏) ∈ [𝑆1]} and J𝑆2K = {𝜎 | ((𝑠, 0), 𝜎, 𝜏) ∈ [𝑆2]}. We
fix 𝑠 ∈ Σ, then
Jif 𝑏 then 𝑆1 else 𝑆2 fiK

={𝜎 | (𝜎, 𝑠, if 𝑏 then 𝑆1 else 𝑆2 fi) ↓}
={𝜎 | (𝜎, 𝑠, 𝑆1) ↓ and J𝑏K(𝜎 (0), 𝑠) = true}∪
{𝜎 | (𝜎, 𝑠, 𝑆2) ↓ and J𝑏K(𝜎 (0), 𝑠) = false}

={𝜎 | ((𝑠, 0), 𝜎, 𝜏) ∈ [𝑆1] and J𝑏K(𝜎 (0), 𝑠) = true}∪
{𝜎 | ((𝑠, 0), 𝜎, 𝜏) ∈ [𝑆2] and J𝑏K(𝜎 (0), 𝑠) = false}

={𝜎 | ((𝑠, 0), 𝜎, 𝜏) ∈ [if 𝑏 then 𝑆1 else 𝑆2 fi]}

Case 𝑆1 ; 𝑆2. Suppose that J𝑆1K = {𝜎 | ((𝑠, 0), 𝜎, 𝜏) ∈ [𝑆1]}
and J𝑆2K = {𝜎 | ((𝑠, 0), 𝜎, 𝜏) ∈ [𝑆2]}. We fix 𝑠 ∈ Σ, then
J𝑆1 ; 𝑆2K is the set

{𝜎 | (𝜎, 𝑠, 𝑆1 ; 𝑆2) ↓}
= {𝜎 | (𝜎, 𝑠, 𝑆1, ∅) −→ (𝜎2, 𝑠 ′,✓, ∅) and(𝜎2, 𝑠 ′, 𝑆2) ↓}
∪ {𝜎 | (𝜎, 𝑠, 𝑆1, ∅) = (𝜎0, 𝑠0, 𝑆1,0, ∅) and
∀𝑛.∃𝑚.(𝜎𝑛, 𝑠𝑛, 𝑆1,𝑛, ∅) −→𝑚 (𝜎𝑛+1, 𝑠𝑛+1, 𝑆1,𝑛+1,✓)}

We first observe that if (𝜎, 𝑠, 𝑆1, ∅) −→ (𝜎2, 𝑠 ′,✓, ∅) then 𝜎2
is a postfix of 𝜎 , and there exists a 𝑗 ∈ N such that the 𝑗-th
derivation of 𝜎 is 𝜎2, i.e., 𝜎 (𝑗) = 𝜎2. Therefore, [𝑆1] ◦ [𝑆2] is
the set

{(𝜏, 𝜎, 𝜆) | (𝜏, 𝜎, (𝑠 ′, 𝑗)) ∈ [𝑆1] and ((𝑠 ′, 𝑗), 𝜎, 𝜆) ∈ [𝑆2]}
={(𝜏, 𝜎, 𝜆) | (𝜏, 𝜎, (𝑠 ′, 𝑗)) ∈ [𝑆1] and ((𝑠 ′, 0), 𝜎 (𝑗) , 𝜆) ∈ [𝑆2]}
={((𝑠, 0), 𝜎, 𝜆) | (𝜎, 𝑠, 𝑆1, ∅) −→ (𝜎 (𝑗) , 𝑠 ′,✓, ∅) and
(𝜎 (𝑗) , 𝑠 ′, 𝑆2) ↓ and 𝜆 = ★ or

𝜆 is final state after S2 terminates.}
We then observe that the condition of always eventually tick-
ing can be written as always eventually the oracle progresses,
i.e.,∀𝑛.∃𝑚.(𝜎 (𝑘) , 𝑠𝑛, 𝑆1,𝑛, ∅) −→𝑚 (𝜎 (𝑘+1) , 𝑠𝑛+1, 𝑆1,𝑛+1,✓). There-
fore, given the initial state 𝑠 and the statement 𝑆1, the ora-
cle stream 𝜎 is non-terminating but accepting, which corre-
sponds to the elements ((𝑠, 0), 𝜎,★) ∈ [𝑆1]. Thus,

J𝑆1 ; 𝑆2K = {𝜎 | (𝜏, 𝜎, 𝜆) ∈ [𝑆1 ; 𝑆2]}

Case while 𝑏 do 𝑆 od. Suppose that J𝑆K = {𝜎 | (𝜆, 𝜎, 𝜏) ∈
[𝑆]}.We distinguish two kinds of valid runs inwhile𝑏 do 𝑆 od:
either the run terminates; or the run does not terminate
but synchronize infinitely often. Using standard proof meth-
ods, we can show that the first class of runs is captured

by
⋃∞

𝑘=0 [(while 𝑏 do 𝑆 od)𝑘], which contains some 𝜎 such
that (𝜎, 𝑠,while 𝑏 do 𝑆 od) ↓. For the second class of ac-
cepting runs, we show that the class coincides with the set⋂∞

𝑘=0 prog(𝑆, 𝑘)†.
We use the syntax 𝑆𝑘 as defined earlier. Let Jwhile 𝑏 do 𝑆 odK
be the set {𝜎 | (𝜎, 𝑠,while 𝑏 do 𝑆 od) ↓} defined as the
union of two sets: 𝐹 which is the set of finite runs, and
𝐼 which is the set of infinitely productive runs. We have
Jwhile 𝑏 do 𝑆 odK = 𝐹 ∪ 𝐼 , with

𝐹 =

∞⋃
𝑘=0
{𝜎 | (𝜎, 𝑠, (while 𝑏 do 𝑆 od)𝑘) ↓}

= {𝜎 | (𝜆, 𝜎, 𝜏) ∈
∞⋃
𝑘=0
[(while 𝑏 do 𝑆 od)𝑘)]}

and

𝐼 = {𝜎 | ∃𝑠 .∀𝑘.∃𝑡, 𝑡 ′, 𝑗 .(𝑠, 𝜎, 𝑆𝑘 , ∅) −→ (𝑡, 𝜎 (𝑗) ,✓, ∅)∧
∃𝑚,𝑛 > 0.(𝑡, 𝜎 (𝑗) , 𝑆𝑚, ∅) −→ (𝑡 ′, 𝜎 (𝑗+𝑛) ,✓, ∅)}

= {𝜎 | ∃𝜆.∀𝑘.∃𝑡, 𝑡 ′, 𝑗 .(𝜆, 𝜎, (𝑡, 𝑗)) ∈ [𝑆𝑘]∧
∃𝑚,𝑛 > 0.((𝑡, 𝑗), 𝜎, (𝑡 ′, 𝑗 + 𝑛)) ∈ [𝑆𝑚]}

= {𝜎 | ∃𝜆.∀𝑘.∃𝑡, 𝑡 ′, 𝑗 .(𝜆, 𝜎, (𝑡, 𝑗)) ∈ [𝑆𝑘]∧
∃𝑚 > 0.((𝑡, 𝑗), 𝜎, 𝜏) ∈ [𝑆𝑚] ∩ 𝑃}

= {𝜎 | ∃𝜆.∀𝑘.(𝜆, 𝜎, 𝜏) ∈ [𝑆𝑘] ◦ (
∞⋃

𝑚=1
[𝑆𝑚] ∩ 𝑃)}

= {𝜎 | (𝜆, 𝜎,★) ∈
∞⋂
𝑘=0
[𝑆𝑘] ◦ (

∞⋃
𝑚=1
[𝑆𝑚] ∩ 𝑃)}

where 𝑃 is the set of progressive runs. Observe that 𝐼 ∩𝐹 = ∅.
Then, Jwhile 𝑏 do 𝑆 odK = 𝐹 ∪ 𝐼 with

𝐹 ∪ 𝐼 = {𝜎 | (𝜆, 𝜎, 𝜏) ∈
∞⋃
𝑘=0
[(while 𝑏 do 𝑆 od)𝑘)]}∪

{𝜎 | (𝜆, 𝜎,★) ∈
∞⋂
𝑘=0
[𝑆𝑘] ◦ (

∞⋃
𝑚=1
[𝑆𝑚] ∩ 𝑃)}

= {𝜎 | (𝜆, 𝜎, 𝜏) ∈ [while 𝑏 do 𝑆 od]}
□

Proof sketch for Lemma 3.2. First, observe that the message
buffer of a component changes according to its put and get
operation: in any state (𝜌, 𝜇, 𝑠, 𝑆), 𝜇 collects the assignments
resulting from previous puts and gets. Then, the transition
relation⇒ on configurations makes a put and a get opera-
tions to coincide with a transition on a port configuration.
Therefore, after each put or get on a port 𝑝 , if the resulting
configurationM(𝑝) of port 𝑝 is consistent and the compo-
nent is in a state (𝜌, 𝜇, 𝑠, 𝑆), we haveM(𝑝) (𝜌) = 𝜇 (𝑝). By
Lemma 3.1, and given that initially the configuration of each
port is consistent, we can conclude that the memory buffer 𝜇
coincides with the port store after every operation, including
after the synchronization. □

15

	Abstract
	1 Protocol Description Language
	2 Idealistic Semantics
	3 Realistic Semantics
	4 Distributed Runtime
	5 Evaluation & Future Work
	6 Related Work
	7 Conclusion
	References

